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Abstract 
In this paper, we present numerical investigations on the Mie scattering, and show the rigid 
body resonance of single sphere. It is shown that the bottom of the lowest complete gap and the 
low frequency transmission dip of one-layer slab correspond with the rigid body resonance. 
The attenuation efficiency of the finite phononic crystal slab depends on the interaction 
between the rigid body resonance and matrix. By varying the size and geometry of the 
structural unit, we can tune the resonant frequency, i.e., the dip frequency of the slab. Base on 
this idea, a stacked four-layer slab, each layer containing different scatterer, is introduced as an 
effective broadband sound barrier. The improvement of the sound insulation in comparison 
with the periodic layered plate is also verified. 

INTRODUCTION 

As an analogy to electromagnetic wave attenuated by “photonic band gap”, sound 
attenuation for a certain frequency range can be achieved by phononic band gap, which 
comes from a strong periodic modulation in density and/or elastic coefficients. 
Recently, several articles try to bring the gap of the phononic crystal (PC) with a 
reasonable size to low frequency range, around 500Hz, as a more useful sound shield. 
The investigations focus mainly on the locally resonant sonic materials (LRSM). It is 
well known that the sound attenuation effect is predicted conventionally by the mass 
density law within this low frequency range. The improvement of the gap insulation in 
comparison with the mass law was demonstrated theoretically and experimentally [1,2]. 
It is known that the mechanism of the gap formation for two-component PC is mainly 
induced by the rigid body resonance (RBR) [3,4], but it dose not show the RBR 
explicitly and accordingly the relation of the gap of infinite system, transmission dip of 
finite slab and the RBR is somewhat unclear.  
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This paper tries to deal with these inexplicit questions. Then keep in mind that the 
mechanism for the attenuation of acoustic wave, we can improve the attenuation of the 
PC slab with finite thickness under the condition of the required rigidity for practical 
applications.  

THE MODEL AND THE MULTIPLE-SCATTERING THEORY 

We consider a simple cubic lattice of nonoverlapping spheres of radius R, arranged 
periodically in a continuous matrix. Figure 1 shows the model of the three-dimensional 
PC considered in this paper under the Cartesian coordinates system. The spheres of a 
plane (xy plane) are arranged infinitely on a two-dimensional lattice defined by the 
primitive vectors a1 and a2 [see Figure 1(a) and Figure 1(c) shows the corresponding 
first Brillouin zone]. The finite crystal slab is viewed as a sequence of planes of spheres 
perpendicular to the z axis [see Figure 1(b)]. For simplicity, the slab extends infinitely 
on both sides in order to avoid all the interfacial phenomena that could alter the results.   
 
 
 
 
 
 
 
 
 
Figure 1 –The primitive vectors a1, a2 and a3 in three dimensional lattice. (a) and (b) denode 
the lattice in xy-plane and out of xy-plane respectively. (c) The first unreduced Brillouin zone 
of the array in xy-plane. 
 

The displacement in a homogeneous elastic medium represents the following 
time-independent equation 

 
2( 2 ) ( ) 0λ μ μ ρω+ ∇ ∇⋅ − ∇×∇× + =u u u .                              (1) 

 
In a spherical system, the solution can be decomposed into a longitudinal and two 

transverse solutions, that is 
 

= + +u L M N .                                                     (2) 
 

The spherical-wave solutions of the wave equation can be written in generally 
form 
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where 1,2,3σ = correspond to the , ,L M N modes respectively. The definitions of 
( )lmσJ r  and ( )lmσH r  can be found in Ref. [5,6]; ,lm lmb aσ σ  represent the expansion 

coefficients of scattered and input waves. The relation between the coefficients 
{ }lmB b σ=  and { }lmA a σ=  can be acquired by the solution of the elastic Mie scattering, 

i. e., 
 

B TA= .                                                              (4) 
 
The scattering matrix T of an incident longitudinal wave presents the following 

form [5],  
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The meanings of the five nonzero elements are pellucid, for example, LL stands 

for the conversion from L to L mode during the scattering procedure. It shows that the L 
mode and the N mode are coupled to each other, while the M mode is decoupled. 

 
Table I. Physical parameters of the materials 

Material ρ (Kgm-3) lc ( ms-1) tc ( ms-1) 
steel 7890 5780 3220 
Pb 11600 2493 1133 
W 19300 5090 2800 

Epoxy 1180 2490 1180 
Silicon rubber 1300 22.8 5.5 

CALCULATED RESULTS AND DISCUSSION 

To begin with, we consider the single steel sphere (R1 = 5.25mm), coated with silicon 
rubber (R2 = 6.75mm), immersed in infinite epoxy. When a plane wave is incident on 
the sphere, it is scattered by it, so the wavefield outside the sphere consists of the 
incident wave and a scattered wave. Figure 2 shows the absolute values of the T-matrix 
elements as a function of frequency, defined by Eq.(5) in the previous section. For the 
frequencies near the first complete band gap [see figure 3(a), which represents the band 
structure of the coated steel spheres arranged in epoxy with simple cubic lattice], we 
find that only the first order spherical-wave expansion (l =1) for T-matrix has 
significant amplitude. The T-matrix elements are showed in Figure 2(a). Figure 2(b) 
shows the corresponding elements for l = 2. One can readily see that the resonance 
amplitude is almost two orders lower than that of l =1and is out the frequency range of 
the first gap of the corresponding PC. From figure 2(a) we can readily see that the 
strong LL, NL, LN and NN resonance exists around 504 Hz and 1591 Hz, as showed by 
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the peaks of the T elements, which gives rise to the relatively flat bands at the bottom of 
the first and second gaps. Here we pay more attention to the low frequency resonance 
for l =1, known as RBR [7]. It is generally known that the coated sphere resonates as a 
whole at this frequency. The physical insight of the RBR can be explained by a 
mass-spring model, i.e., the scatterer offers the mass and the coating offers the spring. 
Away from these resonances, the almost linear dispersion lines denote that the 
three-component system behaves like an effective medium, the slopes of the dispersion 
lines correspond to the speeds of the elastic wave for each polarization. When the 
frequency reaches the resonance, the coupling between the linear dispersion and the 
resonance of the individual spheres opens a gap, which accounts for the first gap 
existed between 504Hz and 802Hz in figure 3(a). So the mechanism of the lowest gap 
formation emerges as the interaction of the RBR and the effective medium. Figure 3(b) 
shows the transmittance of an incident longitudinal wave crossing one-layer slab with 
steel spheres coated silicon rubber immersed in epoxy. We can see that the first dip is 
induced by the RBR (and the second dip is induced by the high-frequency resonance of 
l =1). In viewpoint of wave, part of elastic wave travels with resonant mode 
accompanying with the 180° phase jump, and the rest propagates in a nonresonant way 
across the structure. As a consequence, interferences between both wave components 
may occur, which results in the transmission dip for finite slab and the lowest complete 
gap for infinite PC. 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – The elements of the Mie scattering matrix for steel spheres (R1 = 5.25mm) coated 
with soft rubber (R2 = 6.75mm) embedded in epoxy as a function of the frequency. Here (a) and 
(b) represent the results for l=1 and l=2 respectively. The inset in (a) presents the zoom area of 
the first resonance. L mode to L (N) mode is presented by dashed line with blue colour (solid 
line with black colour), and N mode to N (L) mode is presented by blue thick dash-dot (red dot) 
line.  
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Figure 3 –(a) Band structure of simple cubic lattice of steel spheres (R1 = 5.25mm) coated 
by soft rubber (R2 = 6.75mm) embedded in epoxy. (b) The transmittance of an incident 
longitudinal wave crossing one-layer slab with steel spheres coated silicon rubber immersed in 
epoxy in a square array. The lattice constant a is 15mm. 
 
        Now we replace the rigid matrix with the soft silicon rubber, i.e., forming the 
two-component PC with the same lattice as the PC discussed above. Great changes 
appear in the resonance of the T-matrix. For example, the sharp peak, accordingly the 
flat band, disappears [see figure 4 and figure 5(a)]. But we can see that the first 
complete gap is induced by the RBR too. As a verification, the peaks of the NL and NN 
resonance for l = 1 in figure 4(a) correspond to the gap bottom and the transmittance 
dip of the one-layer slab in figure 5(b). 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 –The elements of the Mie scattering matrix for steel sphere in silicon rubber.  The line 
styles used here possess the same attribute as that in Figure 2. 
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Figure 5 –(a) Band structure of steel spheres embedded in silicon rubber. (b) The 
transmittance of the one layer slab. The lattice used here as the same as that in figure 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6  –Transmittance of longitudinal elastic wave incident normally on a single layer of W, 
Pb, steel and D spheres (R = 6.75mm) with a square lattice in silicon rubber, indicated by 
dashed (green), dash-dot (black) solid (blue) and dot (red ) lines respectively. 
 

As verification, we investigate the transmittance of a plane elastic longitudinal 
wave incident normally on one-layer slabs made of various scatterers embedded in 
silicon rubber. What can be seen from figure 6 is that the dips exist at 220Hz, 270Hz 
and 306Hz, representing W, Pb and steel spheres respectively. The dip is dependent on 
the mass of the scatterer, i.e., heavier scatterer inducing lower-frequency dip. We 
believe that the observed dip in the transmission spectra is induced by the RBR of the 
sphere. The mechanism can also be explained by a mass-spring model as the case of the 
LRSM, i.e., the scatterer offers the mass and the matrix offers spring. But here no 
simple formula can be given for more interaction among the spheres. As the density of 
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the scatterer increases, the stronger interaction between the spheres and the matrix, 
which, in turn, leads to wider dips in the transmission spectra (see figure 6). As another 
verification, the transmittance of the slab composed of one-layer spheres D (got by 
reducing the density of steel sphere as the same density as the matrix but remaining 
other parameters artificially) cannot present any dip, shown as thick dot line (red color). 
The reason is that the RBR disappears in the present case. Note here that the large 
impedance mismatch induced by the velocity cannot induce dip in the transmittance, 
accordingly the band structure of the infinite system shows no complete gap (the band 
structure is omitted for paper length). So the first complete gap and the corresponding 
attenuation are mainly induced by the RBR because of the density of the scatterer.  

With a detail comparison between the figure 4(a) and figure 2(a), one can see that 
the amplitudes of the T elements of the bi-component are much lager than that of the 
tri-component system. The peaks of NL and NN resonance exceed 0.8, compared with 
the corresponding peaks of tri-component in figure 2(a), justly about 6×10-6, which 
induce the good attenuation efficiency in bi-component PC.  

 
  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 –Dash-dot line, the layers in turn include W ball, steel ball and hollow steel ball 

with inner radius 1.5mm and 4.5mm respectively, and all the scatterers with outer radius 
6.75mm, the overall thickness 60mm; solid line, the array maintained but each layer is 
separated by rigid epoxy plate with thick 1mm, so the overall thickness is 65mm; dot line, the 
epoxy/silicon rubber layered structure, with the thickness 1mm and 15mm. 

 
The discussion above demonstrates that the relative intense interaction between 

the sphere and the matrix is a key factor to develop the good attenuation in the finite 
slab. And we can tune the attenuation frequency by adjusting the frequency of the RBR. 
The soft two-component PC can produce good attenuation, but the whole structure 
might be so soft that can’t be used in technological applications. Can we improve the 
rigidity of the two-component PC, but do not reduce (or reduce little) the attenuation? 
Firstly, we stack four layers with different scatterer, i.e., with different resonant 
frequency. A broadband sound attenuation ranges from 210 Hz to 410 Hz (with centre 
frequency 346Hz), is showed in figure 7 by dash-dot line. In order to give the detail of 
the attenuation, the transmittance shows in denary logarithm form. Note that the 
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respective dip of the various scatterer vanishes, which implies that the inter-layer 
effects make the structure plays a whole role. Then, we separate different layer by rigid 
plate as a simple support. Obviously, the inter-layer effects between various scatterer is 
weakened. One can see that there are three obvious dips in obvious attenuation domain 
(the solid steel sphere behaves as almost the same resonant frequency as the hollow 
steel sphere with inner radius 1.5mm, so the central dip around 480 Hz is more 
obvious), as showed in figure 7 by solid line, which denotes various resonant frequency 
associated with different scatterer. The stacked slab displays a well attenuation range 
over 330–540 Hz, which is little higher than that of the system without epoxy 
reinforced. The reason is that the epoxy plates enhance the rigid of the effective 
medium, so the resonant frequency gets high. If we look the tri-component PC as 
another type of support, the resonant frequency will get higher too. The reader may 
doubt that the attenuation may be induced by silicon/epoxy interfacial phenomena. 
Here, we give the transmittance of four-layer slab stacked by epoxy and silicon rubber 
plate alternately, with thickness 1mm and 15mm respectively. This system presents 
gap attenuation with small width exists around 720Hz, which is out of our 
consideration. The dot line shows the Fabry-Perot-type oscillations induced by the 
finite layer slab.  

CONCLUSIONS 

In summary, we have shown that the first complete band gap is induced by the 
RBR in two- and tri-component PC. The physical reason is, part of an elastic wave 
traveling with resonant mode and the rest propagating in a nonresonant way across the 
structure. As a consequence, interferences between both wave components may occur, 
which induces the dip in the finite PC slab. The reason for better attenuation in 
two-component PC is answered by the Mie scattering of the single scatterer. Finally, A 
broadband sound shield based on layers of RBRs was developed. These findings open 
up opportunities for the structural optimization for low-frequency sound attenuation.  
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