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Abstract 
A periodic binary straight beam with different cross sections is constructed and studied. 
The band structure and the transmission frequency response function of flexural waves 
in the structure are calculated with the plane-wave expansion method and the finite 
element method. The theoretical results are validated with vibration experiments and 
the results match mainly. Based on the feature of flexural wave band gaps of beam with 
periodic structure, a vibration isolation structure is designed. The transmission 
frequency response function of the vibration isolator is calculated with finite element 
method, where a band gap with attenuation of about 20dB exists. Vibration 
experiments are also conducted and the vibration attenuation of the vibration isolator is 
validated. 

INTRODUCTION 

The propagation of elastic wave in periodic composite called phononic crystals (PCs) 
has received a great deal of attentions[1-15]. Particular interests are focused on the 
existence of the so-called phononic band gaps (PBG) where elastic waves are all 
forbidden. The study on PBG materials and structures is driven partly by potential 
applications such as elastic wave filters, vibrationless environments for high-precision 
systems, transducer improvements, as well as pure physical concerns with the 
Anderson localization of sound and vibration. To our knowledge, a few works about 
the applications of PCs has been published[13-15], but none of them has been used 
directly in the applications of vibration isolation or attenuation.  

In this paper, we present a structure with the idea of PCs that can be used to 
isolate vibrations. First, we construct a periodic binary straight beam with different 
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cross sections. The band structures of flexural waves in the structure are calculated 
with the plane-wave expansion (PWE) method and the transmission frequency 
response function (FRF) of a finite sample of it is calculated with the finite element 
method. Both the theoretical results are validated with the vibration experiment, and 
the results match mainly. Second, a vibration isolator is designed based on the feature 
of flexural wave band gaps of beam with periodic structure. The transmission FRF of 
the isolator is calculated with finite element method, which shows the existence of the 
band gaps and an attenuation of about 20dB in the band gaps. Finally, the vibration 
attenuation of the vibration isolator is validated by a vibration experiment. 

THEORY 

 

 

 

 

 

Figure 1– Periodic binary straight beam with different section for each segment 
 
Figure 1 illustrates a periodic binary straight beam with different cross sections. 
Aluminum and Lucite segments with different sizes of cross sections are arrayed along 
x-dimension periodically. The lattice constant is a, and the cross section of the beam is 
a bAl×hAl and bLu×hLu rectangles respectively. We consider the flexural wave in x-y 
plane. 

If the thickness h in y-direction and width b in z-direction in each segment of the 
beam are much smaller than the lattice constant a (often a≥5b and a≥5h), each unit cell 
can be regarded as Euler-Bernoulli beam, where both the shearing deformation and 
rotational inertia of the cross sections are negligible. The flexural elastic wave equation 
along x-direction is [16] 
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where ρ(x) is the mass density, E(x) is the Young’s module , y(x, t) is the displacement 
in y-direction, I(x) is the moment inertia, and A(x) is the cross section area. The I and A 
are calculated with the size and shape of cross section which are independent with the 
materials. For example, if the cross section is a b×h rectangle, they can be calculated 
with I=hb3/12 and A=bh. 

For a periodic structure, Bloch’s theorem [17] asserts that y(x, t) in Eq. (1) can be 
written as  
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where k is restricted within the first Brillion zone and yk(x) is a function with the same 
period as 1/ρ(x), E(x), A(x) and I(x) which can be expanded in Fourier series 
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where f(x) stands for 1/ρ(x), E(x), A(x) and I(x) respectively, G is the reciprocal lattice 
vector.  

Substituting Eqs. (2) and (3) into Eq. (1), we obtain 
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where G’=G0-G.  

Equation (4) is an infinite set of linear equations. In practice, only a finite number 
of vectors G’ and G0 (plane waves) can be employed in the calculation. We employ 441 
plane waves in this paper and the convergence is satisfied. The band structure 
represents all the stable flexural wave modes propagating in the infinite periodic 
structure of binary straight beam with different cross sections. 

THEORETICAL AND EXPERIMENTAL RESULTS 

Using the PWE in this paper, we calculate the flexural wave band structure of the beam 
with infinite periods illustrated in Figure 1 The structural parameters employed in the 
calculations are a=0.07m, filling fraction f=2.5(where f=lAl/lLu, lLu and lAl are the 
lengths of Al and Lucite segments), bAl =bLu=hAl=0.01m, hLu=0.005m. The material 
parameters used are ρAl=2799 kg·m-3, EAl=7.2×1010 Pa for Aluminium; ρLu=1142 
kg·m-3, ELu= 2.01×109 Pa for Lucite. Figure 3(a) shows the calculated flexural wave 
band structures. With the FEM, we calculated the transmission frequency response 
function of a finite sample of the beam with 6 and 10 periods, which are showed in 
Figure 3(b) respectively.  

In order to verify the results calculated with the PWE and the FEM, a vibration 
experiment is performed. The experimental system is shown in Figure 2. Here, a white 
noise signal with bandwidth from 0 to 3.2kHz is input into the vibration shaker, which 
transmits vibrations to the left end of the beam through the force transducer. Then the 
flexural waves propagate through the beam. The acceleration at the right end of the 
beam is measured with an accelerometer. The measured results are shown in Figure 3 
(b) comparing with that calculated with the FEM.  

 
 
 
 
 
 
 
 

Figure 2 – Experimental setup and experimental sample 
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In Figure 3(a), the first gap in the dispersion curves [solid lines in Figure 3(a)] of 
the flexural wave locates between 501 Hz and 1430 Hz. The frequency range of the 
large attenuation in the calculated transmission FRF curves [dotted line and dash doted 
line] is from 480 Hz to 1350 Hz. The frequency range of large attenuation in the 
measured transmission FRF curves [solid line and dashed line] is from 430 Hz to 1250 
Hz. All the theoretical and experimental results match in the main. The measured and 
calculated results also show that the attenuation in the band gap is in the direct ratio 
with the periodic number. 

The influence of the rotational inertia of the cross section and the shear 
deformation is involved in the FEM and experiment results, while it is not considered 
in the PWE method. Because both the shear deformation and the rotational inertia tend 
to lower the value of the frequencies, the start and stop frequencies of sharp drops are 
slightly smaller than those of the flexural wave band gaps.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3 (a) – Calculated band structure of the periodic binary straight beam with different 
cross sections illustrated in Figure 1. (b) Calculated and measured transmission FRF of finite 
samples of the periodic beam. The solid line and dashed line represent the measured results 
corresponding to a sample of 6 periods and 10 periods respectively. The dotted line and dash 
dotted line represent the calculated results corresponding to samples of 6 and 10 periods 
respectively 
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APPLICATION TO A VIBRATION ISOLATION STRUCTURE 

A vibration isolation structure illustrated in Figure 4 is designed based on the band gap 
feature of flexural waves on beam with periodic structure. Aluminium and Lucite bars 
with different rectangular cross sections are jointed together and arrayed alternatively 
in a framework of eight layers. Four Al blocks located at the four angles or the mid of 
four sides of each layer acts as shoring to connect each layer one by one. To strengthen 
the structure, a Lucite cross is applied in each layer. When vibration occurs, it is 
transferred to the bottom layer through the shoring located at the angles of the bottom 
frame and converted into the flexural wave in it. Whereafter, the vertical vibrations on 
the mid of the sides of the first frame induced by the flexural wave on it is transferred to 
the second layer. At last, the vibration propagates through the whole structure in mode 
of flexural wave and transferred to the bearing plate. The lattice constant a is about 
0.07m, and the filling fraction f is about 2.5(for the existence of the shoring, we can’t 
get the exact values).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 –The finite element model of a vibration isolation structure composed of periodical 
binary beams 
 

The transmission FRFs of the vibration isolation structures are calculated with the 
FEM and illustrated in Figure 5. For the result of the isolator without Lucite cross 
illustrated in Figure 5(a), the frequency range of the large attenuation is from 720 Hz to 
1450 Hz which is also known as the band gap. For the isolator with Lucite cross, the 
calculated result illustrated in Figure 5(b) shows that the band gap is between 750Hz 
and 1400Hz. For both cases, the attenuations in the band gaps are all in direct ratio with 
the period number. Two results match well, which indicts that the Lucite cross 
introduced to the vibration isolation structure has little influence on the transmission 
FRF. The calculated upper frequency of the band gap of the vibration isolator and the 
calculated and measured result of the periodic beam matches in the main. Although the 
vibration isolation structure is composed of same units as in the periodic beam, they are 
different structures with different boundary conditions. Therefore, the lower frequency 
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of the band gap of the vibration isolation structure is a little higher than that calculated 
with the periodic beam. However, the difference is small enough for us to design the 
vibration isolator using the band gap results of periodic beam glancingly. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 (a) – The transmission FRF curves of the vibration isolation structure without the 
Lucite cross. (b) The transmission FRF curves of the vibration isolation structure with the 
Lucite cross. The solid line, dashed line and dotted line represent the calculated results 
corresponding 4 periods, 6 periods and 8 periods. 

EXPERIMENTAL MODEL AND RESULTS 

As the Lucite and the Aluminium is difficult to joint together in order to construct the 
vibration isolator illustrated in Figure 4, we employ another isolator with similar 
structure shown in Figure 6 in the vibration experiment. In the new structure, 
Aluminium is replaced with a sandwich structure consists of Lucite and Copper. Our 
intent is just to validate the vibration attenuation ability of such structures instead of the 
exact theoretical results that calculated before with this different structure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 The experimental model of the vibration isolation structure 
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The frequency range of large attenuation in the measured acceleration FRF curves 
of this structure shown in Figure 7 is from 280 Hz to 1200 Hz. The measured results 
also show that the attenuations in the band gap are in direct ratio with the period 
number. The existence of band gap of the structure verifies that the vibration isolation 
structure can be designed with the idea of the phononic crystals. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 – Measured acceleration FRF of the vibration isolation structure. The solid line and 
dashed line represent the measured results corresponding 4 periods and 6 periods 

CONCLUSIONS 

In conclusion, both the theoretical and the experimental studies show the existence of 
flexural wave band gap in the periodic binary straight beam with different cross 
sections, and the calculated and the measured results match mainly. Based on these 
results, a vibration isolation structure is designed. A band gap with attenuation of about 
20dB is found with both the finite element method and the vibration experiments, 
which validates the vibration attenuation capability of the vibration isolator based on 
the idea of phononic crystals. 
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