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Abatract
In this paper, we will verify chaotic motion first and go on to the chaotic control in an

automotive wiper system, which consists of two blades driven by a DC motor via one link.
The complex nonlinear behaviors may be observed more thoroughly over a range of
parameter values by the bifurcation diagram. Next, by using the estimation of the largest
Lyapunov exponent, the periodic and chaotic motions can be identified. Finally, a dither
signal will be suggested to control a chaotic automotive wiper system. We also present
some simulation results to demonstrate the feasibility of the proposed method.

INTRODUCTION

Many vibrations that may be harmful to the driver are often observed by running a
wiper on an automotive windshield wiper system. To find an effective way to control
vibrations, we attempt to study the dynamic behaviors of the wiper system. Several
studies have been carried out to investigate the chatter vibrations in an automotive wiper
system (Oya et al.; Suzuki and Yasuda). By applying various numerical analyses results,
such as bifurcation diagram, phase portraits, Poincare map, frequency spectra and
Lyapunov exponents are presented to observe periodic and chaotic motions. For a broad
range of parameters, the Lyapunov exponent is the most effective method to measure the
sensitivity to initial conditions of the dynamical system. The algorithms for computing
Lyapunov exponents of smooth dynamical systems are well developed (Wolf et al.).
Nevertheless, there are non-smooth dynamical systems with discontinuities where this
algorithm cannot be directly applied. However, the methods of the calculation of
Lyapunov exponents for non-smooth dynamical systems have been proposed only in
several papers (Muler; Stefanski). The estimated method of the largest Lyapunov
exponent for wiper system proposed by Stefanski is used in this paper. Recently, the
control of chaotic stick-slip mechanical system is making great progress and several
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techniques have been proposed in references (Galvanetto; Feeny and Moon). Feeny and
Moon have applied high-frequency excitation, or dither, to quench stick-slip chaos. This
technique is also widely used in practice in many nonlinear systems (Tung and Chen; Fuh
and Tung). In this paper, we demonstrate that the control of chaos can be realized by
injecting another external input, called a dither signal, into the system.

MODEL DESCRIPTION

A front windshield wiper system has two blades which attached to the windshield at
the driver’s side and the passenger’s side.  Each blade is supported by an arm, which
moves to and fro around the pivot. This motion is given by the rotation of a DC motor
via a pantographic link. The schematic diagram of automotive wiper system is shown in
Fig. 1. In this figure, the symbols with subscripts D and P are referred to as driver’s and 
passenger’s side, respectively.  The lines with notations Li represent the positions which
the wiper arms take when no deflections occur. The symbols i (i=D, P) are the
angular deflections with respect to the position Li while the notations i are the angular
velocity of the arms. The symbol li represents the length of the wiper arm and iz
represents relative velocities of the blades with respect to Li at the position of the top of
the wiper arms. Then,

),()( PDilz iiii    (1)

In accordance with Newton’s second law, the governing equations for a wiper on the 
i’s (i = D, P) side can be expressed as follows (Suzuki and Yasuda, 1998):

when 0iz , )( iiiiii zMDRI   ,

when 0,0 iiii lNRz  , iiii DRI  ,

when 0,0 iiii lNRz  , )(0 iiiiI    , (2)

where the symbols Ii are the moments of inertia and Mi are the moments induced by the
friction force between the wiper blades and the windshield.
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Figure 1 The analyzed automotive windshield wiper system

Ri and Di are the moments produced by the restoring force and the damping force,
respectively. That is given as follows:

PDPDDD kkR   , DPDPPP kkR   , (3)

PDPDDD ccD   , DPDPPP ccD   , (4)

where,

)/()( MPDMPDD KKKKKKk  , )/( MPDPDPDDP KKKKKkk  ,

)/()( MPDMDPP KKKKKKk  , DPD Cc  , PDPP CCc  ,

DPPDDP Ccc  .

The moments Mi can be written as:
)()( iiiii zlNzM   , (5)

where Ni is the normal force. The coefficient of friction, , which can be expressed

using the following relationship proposed by Suzuki and Yasuda:

3
210 )sgn()( iiii zzzz    ),( PDi  . (6)

Let Dx 1 , Dx 2 , Px 3 and Px 4 be the state variables, the state

equations of the wiper system (Eq. (2)) on the driver’s side can be written as follows:
when 0Dz ,

21 xx  ,

DDDDD IzMDRx /))((2   ,

when 0,0 DDDD lNRz  ,

21 xx  ,

DDD IDRx /)(2  ,
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when 0,0 DDDD lNRz  ,

Dx 2 ,

21 xx  ,
02 x . (7a)

The state equations of the wiper system (Eq. (2)) on the passenger’s side can be 
written as follows:
when 0Pz ,

43 xx  ,

PPPPP IzMDRx /))((4   ,

when 0,0 PPPP lNRz  ,

43 xx  ,

PPP IDRx /)(4  ,

when 0,0 PPPP lNRz  ,

Px 4 ,

43 xx  ,

04 x . (7b)

The values of the parameters of the above equations are listed in Table 1.

CHAOTIC MOTION AND LYAPUNOV EXPONENT

To clearly understand the dynamics of this system, we carry out a series of numerical
simulations from Eqs. (7). To see these behaviors in detail are presented in Chang and
Lin. The largest Lyapunov exponent is one of the most useful diagnostics for chaotic
system. Algorithms for computing the Lyapunov spectrum of “smooth”dynamical
systems are well established (Wolf et al.; Benettin et al.). But there are “non-smooth”
dynamical systems with discontinuities where this algorithm cannot be directly applied.
Recently, Stefanski has suggested a simple and effective method to estimate the largest
Lyapunov exponent, which utilizes the properties of synchronization phenomenon. This
method can be explained briefly: the dynamical system is decomposed into two
subsystems as follows:

drive system:
)(xfx  , (8)

response system:
)(yfy  . (9)
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Let us consider a dynamical system, which is composed of two identical
n-dimensional subsystems, where only the response system (8) is combined with a
coupling coefficient d, while the equation of drive remains the same. The first order
differential equations describing such a system can be written as:

)(xfx  ,
)()( yxdyfy  . (10)

Now the condition of synchronization (Eq. (10)) is given by the inequality: d>max.
In the synchronization, ds, the smallest value of the coupling coefficient d, is assumed to

be equal to the maximum Lyapunov exponent: ds=max. The results of

Figure 3 The evolutions of the largest Lyapunov exponent

numerical calculations are listed in Fig. 3, which shows the largest Lyapunov exponents
that have been obtained from using the described synchronization method.

CONTROLLING CHAOS

In this section, we will demonstrate that the injection of another external input, called
a dither signal, into this chaotic system can control the chaotic motion. Recently, a dither
smoothing techniques have been proposed to stabilize the chaotic system. A simple
dither signal is a high-frequency sinusoid. In this case, the effective value of n is its
average over a complete period of the sinusoidal dither signal oscillation, namely





d)sin(

2
1 2

0  Wxfn . (11)

Now, we add a sinusoidal dither in front of nonlinearity (6). Adding the sinusoidal
dither signal to Eq. (7a) (the driver’s side) obtains a coupled system as follows:
when 0Dz ,

21 xx  ,

(rad/s)D
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DDDDD InlNDRx /)( 12  ,

when 0,0 DDDD lNRz  ,

21 xx  ,

DDD IDRx /)(2  ,

when 0,0 DDDD lNRz  ,

Dx 2 ,

21 xx  ,
02 x , (12a)

where

.d])sin()sin()sinsgn([
2
1

d)sin(
2
1

2

0

3
110

2

01



















WzWzWz

Wzn

DDD

D





And, adding the same dither signal to Eq. (7b), the passenger’s side can be written as 
follows:
when 0Pz ,

43 xx  ,

PPPPP InlNDRx /)( 24  ,

when 0,0 PPPP lNRz  ,

43 xx  ,

PPP IDRx /)(4  ,

when 0,0 PPPP lNRz  ,

Px 4 ,

43 xx  ,

04 x , (12b)

where

.d])sin()sin()sinsgn([
2
1

d)sin(
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1

2

0

3
110

2
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Now, let us choose the system parameter 3.0D and frequency of the sinusoidal

dither is 2000 rad/s. We choose the sinusoidal dither amplitude W = 1.2 and frequency =
2000 rad/s, and add this signal in front of the nonlinearity (6). In simulations, we choose
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W = 1.2 and apply dither signal after 4 seconds. The results are shown in Fig. 9. As we
can see, the system exhibits a chaotic behavior before the application of dither, whereas it
exhibits a periodic motion after the injection of dither.

CONCLUSIONS
This paper is concerned with the complex nonlinear behaviors and chaos control on a

wiper system. The Lyapunov exponent will be the most powerful method to examine
whether the system is in chaotic motion or not. The method of estimating the largest
Lyapunov exponent for wiper system uses the properties of synchronization phenomenon.
In order to effectively improve the performance of wiper system o r avoid the chaotic
motions, the dither signals in front of the nonlinearity of a chaotic system are applied to
suppress chaotic motion. Finally, through sinusoidal type of dither signal, we can also
efficiently convert the chaotic system into a periodic orbit by injecting dither signal in
front of the nonlinearity of a chaotic system.

Figure 9 Controlling chaotic motion to a desired period-one orbit for W = 1.2 and

0.3D  (rad/s). (a)Time response; (b)Phase portrait.
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TABLE

Table 1

system parameter Value Unit

DI 0.0407 kgm2

PI 0.0367 kgm2

KD 720 Nm/rad

KP 751 Nm/rad

KM 353 Nm/rad

CDP 0.01 Nms/rad

CP 0.01 Nms/rad

lP 0.45 m

lD 0.47 m

P D16.1 rad/s

ND 7.35 N

NP 5.98 N

0 1.18

1 -0.0984

2 0.474


