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Abstract 
In this paper, the flexural vibration in periodic plates with fluid loading is studied theoretically. 
The effective wavenumber of the flexural wave through the plate with heavy fluid loading is 
obtained and the approximate transfer matrix method can be used to calculate the complex 
band structure to investigate the gap frequency range and the vibration attenuation. 
Furthermore, the effect of the fluid on the band gaps is considered. The existence of flexural 
vibration gaps in thin plate with fluid loading gives a new idea in vibration control of 
plate. 

INTRODUCTION 

In the last decade, the propagation of elastic or acoustic waves in periodic composite 
materials that are called phononic crystals (PCs) has received much attention [1-3, 7, 8]. 
The emphasis of these studies was laid on the existence of complete elastic band gaps 
within which sound and vibration are both forbidden. This is of interest for applications 
such as frequency filters, vibrationless environments for high-precision mechanical 
systems, design of new transducers, and so on. 

The vibration propagation in periodic structures was researched some time ago 
[4-6]. The theory to predicting the vibration response of periodic structures has been 
applied primarily to analysis the periodic structures as pass band and stop band. 
Recently, with the theory of PCs, the vibration band gaps including longitudinal 
vibration, flexural vibration and so on, in periodic beams have been studied both 
theoretically and experimentally [7, 8]. 

In practice, a periodic structure composed of continuous elastic segments may be 
loaded by a uniform acoustic medium and it is necessary to control wave propagation 
in such a strongly coupled structural-acoustic wave guide (an elastic structure with 
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heavy fluid loading) [9]. This information can be useful in designing marine vehicles 
that exhibit reduced acoustic signatures and self-noise characteristics, and for reducing 
interior noise levels in passenger and crew compartments [10,11]. 

Recently, an infinitely long plate and an infinitely long cylindrical shell 
comprising sets of alternating continuous elements both without and with heavy fluid 
loading are considered [9]. But the approximate calculation method they used is very 
complex. An energy finite element method is developed for predicting the 
high-frequency vibration response of fluid-loaded cylindrical shells and plates under 
heavy fluid loading [10,11]. Also, the applicability of the periodic characteristics of 
wave stop and wave propagation bands are investigated for piping systems conveying 
fluid by employing the wave approach and are proved through experiments [12]. They 
found the periodic support design is effective in vibration reduction in a piping system. 

In this paper, we studied the flexural vibration band gaps in periodic plates with 
fluid loading. The effective wavenumber of the flexural wave through the plate with 
heavy fluid loading is obtained. So we can calculate the complex band structure to 
investigate the gap frequency range and the vibration attenuation in band gap by 
transfer matrix method easily. Furthermore, the effect of the fluid on the band gaps is 
researched. 

TANSFER MATRIX THEORY 

Figure 1 shows an infinitely long plate exposed to heavy fluid loading from one side. 
The depth of the fluid is infinite. The system consists of an infinite repetition of 
alternating plate A with length aB1 B and plate B with length aB2 B. Thus the PCs plate’s 
lattice constant is a=aB1 B+aB2B. Plate A and plate B can be made of different material 
parameters illustrated as figure 1. The thickness of the plate A and B are both h. 
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Figure 1 – The sketch map of periodic binary thin plate exposed to heavy fluid loading from 

one side. 

The equations associated with the vibration of a thin plate under heavy fluid 
loading are summarized first. The governing equation of motion for the flexural 
displacement is 
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where D is the bending stiffness of the plate and, sρ  is the mass density, h is the plate 
thickness, and 0=zP is the pressure exerted by the fluid on the vibrating plate. 

At high frequencies, the Eq.(1) can be degenerated as[10,11] 
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where 0ρ  is the fluid mass density, k is the acoustical wavenumber of the fluid medium, 

k Bf Bis the flexural wavenumber of the plate in vacuum and ( )4 2/ ωρ Dhk sf = . And the 
flexural wavenumber γ  of the plate under heavy fluid loading depends on the relation 
value between k and k Bf B. [10,11]  

If  k<k Bf B, the solution is  
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If  k>k Bf B, the solution for γ  is  
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We consider the normal-mode condition )exp()(),( tixXtxz ω= , where ω  is the 

circular natural frequency.  For a thin plate, the amplitude X(x) reads as 
 

)sinh()cosh()sin()cos()( xDxCxBxAxX γγγγ +++=                 (5) 
 

For material A in the (n+1)th cell shown in Figure1(a), the amplitude is 
 

)sinh()cosh()sin()cos()( 111111111 xDxCxBxAxX nnnnn ′+′+′+′=′ γγγγ       (6) 
 

where naxx −=′ , 1anaxna +≤≤ , and 1γ  getting from equation (1) for material A.  
For material B in the (n+1)th cell, the amplitude can be written as 

 
)sinh()cosh()sin()cos()( 222222222 xDxCxBxAxX nnnnn ′′+′′+′′+′′=′′ γγγγ      (7) 

 
where naxx −=′′ , anxana )1(1 +≤≤+ , and 2γ  from equation (1) for material B. 

The continuities of displacement, slop, bending moment and shear force at the 
interfaces between cell n and n+1, i.e. nax =  give 
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)0()( 1)1(2 += nn XaX                                                   (8a) 
 

)0()( 1)1(2 +′=′ nn XaX                                                   (8b) 
 

)0()( 1)1(221 +′′=′′ nn XDaXD                                               (8c) 
 

)0()( 1)1(221 +′′′=′′′ nn XDaXD                                               (8d) 
 

One can obtain the matrix form of equation (8) 
 

1)1(2 += nn HΨKΨ                                                    (9) 
 

where [ ]Tninininini DCBA=Ψ , i=1,2 represent material A and material B. 
Similarly, The continuities of displacement, slop, bending moment and shear force at 
the interfaces between material A and material B in cell n+1, i.e. 1anax +=  give 
 

2)1(1)1( ++ = nn HΨKΨ                                                       (10) 
 

Basing equations (9) and (10), the relation between the nth cell and (n+1)th cell is 
given 
 

22)1( nn TAA =+                                                           (11) 
 

where KHKHT 1
1

1
1

−−=  is the transfer matrix. 
Due to the periodicity of the infinite structure in the x direction, the vector nA  

must satisfy the Bloch theorem [13] 
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where q is the wave vector in the x direction. For convenience, we write all the 
one-dimension vectors as scalar form in this paper. 

It follows that the eigenvalues of the infinite periodic structures are the roots of the 
determinant 
 

0=− IT iqae                                                      (13) 
 

where I  is the 44×  unit matrix. For given ω , equation (13) gives the values of q. 
Depending on whether q is real or has an imaginary part, the corresponding wave 
propagates through the plate (pass band) or is damped (band gap). 
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CALCULATED RESULTS AND DISCUSSION 

We choose a thin plate to calculate the band structure. The geometric properties of the 
plate are aB1 B=aB2 B=0.035m, h=0.005m. As an example, we calculated the band structure of 
the thin plate with material A being epoxy and material B being Al, the material 
properties are given in table I.   
 

Table I. Physical parameters of the materials 

Materials Density ρ 
(Kg/mP

3
P) 

Young’s modulus 
E (Pa) Poisson ratio σ  

Pb 11600 4.08×10P

10
P
 0.37 

Cu 8960 12.71×10 P

10
P
 0.35 

Steel 7780 21.06×10 P

10
P
 0.30 

Al B2 BOB3 B 3986 40.27×10P

10
P
 0.23 

Al 2730 7.76×10P

10
P
 0.35 

C 1750 23.01×10 P

10
P
 0.30 

Epoxy 1180 4.35×10P

9
P
 0.37 

 

The complex band structure can be used to describe the band gaps and attenuation 
in the gaps [14]. Figure 2 illustrate the complex band structure of the infinite periodic 
structure epoxy/steel plate with water loading. The density and velocity of water is 

waterρ =1000 Kg/mP

3
P and c BwaterB=1500m/s, respectively. The real wave vector is 

illustrated in figure 2(a), and the absolute value of the imaginary part of complex wave 
vector is illustrated in figure 2(b). We can find two complete band gaps within 5000Hz, 
settled as the shadowed regions in figure 2(a). The first gap extends from the frequency 
of 374Hz up to 676Hz, the second gap occurs between 2473Hz and 4582Hz. The first 
gap absolute width is =Δf 302Hz, and the normalized gap width =Δ gff / 0.575, 
where gf  is the midgap frequency of the first gap.  

From figure 2(b), one can note that there are two imaginary wave vector 
associated within gaps. One imaginary wave vector corresponds to flexural 
propagation wave illustrated as continue line in figure 2(b). And the other imaginary 
wave vector is the near-field wave that has an imaginary component for all frequencies 
[15] illustrated as dashed line in figure 2(b). As for the first gap, the maximum 
attenuation is 0.11. 

As a comparison, we also calculate the complex band structure of the same 
epoxy/steel plate without fluid loading shown as in figure 3. There are two complete 
band gaps within 10000Hz, settled as the shadowed regions in figure 3(a). The 
frequency ranges of the gaps are 957-1424Hz and 4302-7426Hz respectively. The first 
gap absolute width is =Δf 467Hz, and the normalized gap width =Δ gff / 0.392. The 
maximum attenuation of the first gap is 0.09. 

As is seen from figure 2 and figure 3, heavy fluid produces a very significant 
influence on the location and the width of band gaps. The band gaps are shifted towards 
lower frequencies due to the fluid loading. Also the absolute width of band gaps is 
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markedly narrowed. These conclusions had been discovered early [9]. But the first 
normalized gap width of the plate with fluid loading become wider than that without 
fluid loading.  And the maximum attenuation of the first gap becomes stronger for the 
plate with heavy fluid loading. The last two findings will be significant for the gaps 
application to the vibration control of the plates.  
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Figure 2 – The complex band structure of the flexural vibration with infinite periodic structure 
epoxy/Al plate with heavy fluid loading, the lattice constant a=0.07m and aB1 B:aB2 B=1:1. (a) real 
wave vector, (b) the absolute value of the imaginary part of complex wave vector. 
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Figure 3 – The complex band structure of the flexural vibration for the same epoxy/steel plate 
without fluid loading 
 

As the next step, we consider the influence of material properties on the first band 
gap of the plate. Keeping material A being epoxy, we only substituted material B with 
different material in Table I. In the calculation, the geometric parameters keep same as 
those of figure 2. In Figure 3(a), we plot the size of the first gap for the plate with and 
without fluid loading as a function of the density of the material B. The continuous 
lines mark the upper and lower edge of the first gap of the plate with fluid loading. And 
the dashed lines express the upper and lower edge of the first gap of the plate without 
fluid loading. The material B corresponding with its density is labeled as square cross 
section (with fluid loading) or diamond cross section (without fluid loading). And 
figure 3(b) illustrates the normalized gap width as changing of material B. From figure 
3(b), one can find the normalized gap width of the plate with fluid loading become 
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wider than that without fluid loading. We note that the band gap frequency ranges 
change evidently as density of material B for the plates without fluid loading. But band 
gap frequency ranges change gently as density of material B for the plates with fluid 
loading. Namely, the effect of material parameters on the band gaps becomes weaker 
due to the fluid loading. 
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Figure 4 – (a) The dependency of the first gap frequency range related to the changing of 
material B. (b) The dependency of the normalized gap width as changing of material B. The 
continuous (dashed) lines mark the upper and lower edge of the first gap of the plate with 
(without) fluid loading. 

CONCLUSIONS 

In conclusion, the flexural vibration for a periodic binary thin plate with fluid loading is 
studied theoretically in this paper. The approximate TM method is provided by the 
effective wavenumber.  

By comparing the calculated results of the plate with fluid loading to those 
without fluid loading, we find that the frequency ranges of the band gaps become lower. 
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Also the absolute width of band gaps is narrowed. But the first normalized gap width of 
the plate with fluid loading become wider than that without fluid loading. The 
maximum attenuation of the first gap becomes stronger. Also, the effect of material 
parameters on the band gaps becomes weaker due to the fluid loading. 

The existence of flexural vibration gaps in thin plate with fluid loading gives a 
new idea in vibration control of plate. The findings will be significant in the application 
of PCs. 
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