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Abstract 
The observed phenomena in the actual sound environment often contain uncertainty such as the 
additional external noise (i.e., background noise) with unknown statistics. For example, there 
are complex nonlinear relationships between noise evaluation quantities and background 
noises, and these can not be exactly expressed in a functional form. In these situations, it is one 
of reasonable analyses to consider that the observed signal is contaminated by an external noise 
containing uncertainty. In this study, an estimation method for state variables on a specific 
signal under the existence of a background noise with unknown statistics is proposed by 
introducing fuzzy inference. The effectiveness of the proposed theoretical method is 
experimentally confirmed by applying it to the actually observed data for road traffic noise. 

INTRODUCTION 

The observation data in actual sound environment system exhibit various types of 
fluctuation characteristics, and these often contain uncertainty.  For example, the 
observed signal is inevitably contaminated by the concurrent external noise (i.e., 
background noise) of arbitrary distribution type with unknown statistics.  In this 
situation, in order to evaluate the specific signal based on the observed noisy data, it is 
indispensable to introduce some unified state estimation methods.   

Though several state estimation methods have been proposed up to now, these 
state estimation algorithms have been realized by introducing the additive model of the 
specific signal and the external noise under an assumption of known statistics of the 
external noise [1-3].  The observation equation in sound environment can be generally 
expressed in an additive model of the specific signal and the background noise in 
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energy scale by using physically the additive property of acoustic energy.  However, 
there exist complex nonlinear relationships between the noise evaluation quantities of 
the specific signal and the background noise, and it is difficult in general to find a 
functional relationship between them.  Furthermore, it is actually difficult to know in 
advance statistical properties of the concurrent background noise.   

In this study, a state estimation method for a specific signal under the existence 
of a background noise with unknown statistical properties is proposed in a usual form 
without considering the additive model.  More specifically, after introducing a 
membership function for uncertainty of a sound environment system, by applying a 
fuzzy inference for a relationship between the observed data and the state variable on 
the specific signal, a state estimation algorithm is derived.  The effectiveness of the 
proposed method is experimentally confirmed by applying it to the estimation of noise 
evaluation quantities for road traffic noise under existence of a background noise. 

FORMULATION OF SOUND ENVIRONMENT SYSTEM WITH 
UNCERTAINTY 

Let kx  and ky  be state variable and observation at a time k  for sound environment 
system with uncertainty. It is assumed that the mutual relationship between kx  and ky  
is unknown. For example, the observations in sound environment are inevitably 
contaminated by the external noise (i.e., background noise) of arbitrary distribution 
type.  In general, by using the additive property of acoustic intensity, the observation 
intensity under the existence of external noise can be expressed as an additive model of 
the specific signal and the background noise intensities.  However, for the stochastic 
evaluation quantities: eqL  and xL  ((100- x ) percentile level)  which are required in the 
evaluation of actual sound and vibration environment, there exist complex nonlinear 
relationships between the evaluation quantities of the specific signal and the observed 
evaluation quantities.  These evaluation quantities of the specific signal and the 
observed evaluation quantities have to be regarded as the unknown state variable kx  
and the observation ky  respectively.  Since it is difficult in general to find a functional 
relationship between the state variable kx  and the observation ky ,  any consideration 
for the mutual relationship between kx  and ky  as a sound environment system with 
uncertainty is necessary. In this study, the following IF-THEN rule is introduced for the 
uncertainty of the sound environment system: 
                         Rule 1:  IF  kx   is  1A   THEN  ky   is  1B  
                         Rule 2:  IF  kx   is  2A   THEN  ky   is  2B  
                            ……………………………………….. 
                         Rule N :  IF  kx   is  NA   THEN  ky   is  NB ,                                (1) 
where iA  and iB  ( i =1, 2, …, N ) denote fuzzy sets corresponding to the divided 
several state spaces of kx  and ky , and have membership functions )( kA x

i
µ  and 
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)( kB y
i

µ  ( i =1, 2, …, N ). For example, 1A , 2A , …, NA  are fuzzy sets describing 
the divided state spaces: “very low level”, “low level”, …,  “very high level” for the 
sound level kx . Applying fuzzy inference to (1), ky  is given by [4] 
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where iy  is the value at which )( kB y
i

µ  achieved its maximum value. Furthermore, 

as the membership function )( kA x
i

µ , the Gaussian type, defined by [4] 
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where ix  and iσ  are parameters, is adopted. 
 In the next section, an estimation method for the state variable kx  of the specific 

signal based on the recursive observation ky  is derived.  Though the parameter iσ  in 
(3) can be generally given based on the prior information (or, through trial and error),  it 
can be regarded as unknown constant parameter iσα =(  for every i ) and estimated 

simultaneously with the state variable kx  by introducing the following simple 
dynamic model: 
                                                  .1 kk αα =+                                                                (4) 

STATE ESTIMATION METHOD FOR THE SOUND ENVIRONMENT 
SYSTEM 

In order to derive an estimation algorithm for a state variable kx , with an arbitrary 
distribution, we focus our attention on Bayes’ theorem for the conditional probability 
density function (abbr. pdf).  Since the parameter kα  is also unknown, the conditional 
pdf of kx  and kα  must be considered. 
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where })...,,,{( 21 kk yyyY =  is a set of observation data up to time k .  Based on (5), 
through a similar calculation process to that used in a previously reported estimation 
method [1], the estimate of an arbitrary polynomial function ( )kkNN xf α,2,1  of kx  
and kα  of ( )( )2,1 NNN ≡ -th order can be derived in an infinite series expression, as 
follows: 

( ) ( ) >≡< kkkNNkkNN Yxfxf |,,ˆ 2,12,1 αα  
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with 
                            ( ) ( ) ( ) .| 1

)3()2()1( >≡< −kknkmkllmn YyxA ϕαϕϕ                                                 (7) 

The three functions ( ) ( )kmkl x αϕϕ )2()1( ,  and ( )kn y)3(ϕ  are the orthonormal 

polynomials of degrees ml,  and n , with weighting functions 

( ) ( )1010 |,| −− kkkk YPYxP α  and ( )10 | −kk YyP , which can be artificially chosen as 
the pdfs describing the above dominant parts of the actual fluctuation, or as 
well-known standard pdfs such as Gaussian or Gamma distribution functions.  All the 
coefficients 2,1 NN

lmC  are appropriate constants in the case when the function 

( )kkNN xf α,2,1  is expressed in a series expansion form using ( )kl x)1(ϕ   and ( )km αϕ )2( : 

( ) ( ) ( )., )2()1(212
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As a concrete example of a standard pdf, the well-known Gaussian distribution is 
adopted: 
                      ( ) ( )kkkkk xxxNYxP Γ= ∗

− ,;| 10 ,                                                             (9) 

                      ( ) ( )kkkkk NYP αααα Γ= ∗
− ,;| 10 ,                                                         (10) 

                      ( ) ( )kkkkk yyyNYyP Γ= ∗
− ,;| 10                                                              (11) 
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Then, the orthonormal polynomials with three weighting pdfs in (9)-(11) can be given 
in terms of the well-known Hermite polynomials [5] 
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Using (2) and (3), the two variables ∗
ky  and kyΓ  in (12) can be expressed as: 
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Furthermore, each expansion coefficient lmnA  defined by (7) can be expressed as 
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The variables ∗
ky , kyΓ  and the expansion coefficient lmnA  in (16), (17) and (18) are 

given by the predictions of kx  and kα  at a discrete time 1−k  (i.e., the expectation 
value of arbitrary functions of kx  and kα  conditioned by 1−kY ).  
          Finally, in order to derive the prediction step necessary to perform the recurrence 
estimation, the fuzzy inference is introduced again. More specifically, after dividing 
the state spaces into M  fuzzy regions iS  ( =i 1, 2, …, M ) with membership 
functions )( ki xµ  ( =i 1, 2, …, M ), by creating fuzzy rules from given data sets and 
using the center average defuzzification formula [6], a state transition model can be 
determined as 
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where ix~  is the value at which )( ki xµ  achieved its maximum value, and σ  is a 
constant parameter. By considering (4) and (19), the prediction algorithm can be given 
for an arbitrary polynomial function ),( 11 ++ kkr xg α  of  1+kx  and 1+kα  of 

)),(( 21 rrr ≡ -th order, as follows: 

        >≡< ++++ kkkrkkr Yxgxg |),(),( 1111
* αα  
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The above prediction can be evaluated by the estimates at discrete time 1−k . 
Therefore, by combining (6) with (21), the recurrence estimation of kx  and kα  can be 
achieved. 

APPLICATION TO NOISE EVALUATION QUANTITIES FOR ROAD 
TRAFFIC NOISE 

In order to confirm experimentally the validity of the proposed method, it is applied to 
the actually observed data in sound environment. As the concrete specific signal, the 
road traffic noise becoming one of the aggravating environmental noise pollution is 
adopted.  Based on the observations on noise evaluation quantity: TAL ,50  ( 1=T  min) 
under existence of a background noise, the fluctuation forms of evaluation quantities: 

TALeqL ,  and TAL ,50  ( 1=T  min) for the specific signal are estimated. 
         By dividing the state spaces in sound level scale into 3 fuzzy regions, 11, BA : 

“low level”,  22 , BA : “middle level”, and : 33, BA  “high level”, (1) and (2) are 
expressed as follows: 
      (Inference 1) 
       IF-THEN Rule      Rule 1:  IF  kx   is  1A   THEN  ky   is  1B  
                                     Rule 2:  IF  kx   is  2A   THEN  ky   is  2B  
                                     Rule 3:  IF  kx   is  3A   THEN  ky   is  3B ,                        (22) 

       Defuzzification    
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where the three parameters are decided as: 1y =(mean of ky )-3× (standard deviation of 

ky ), 2y =(mean of ky ), and 3y =(mean of ky )+3× (standard deviation of ky ). 
Furethermore, the following two IF-THEN rules slightly modified (1) and (2) are 

introduced: 
      (Inference 2) 
       IF-THEN rule      Rule 1: IF kx  is 1A  or 2A  THEN ky  is 1B  
                                    Rule 2: IF kx  is 1A  or 2A  or 3A  THEN ky  is 2B  
                                    Rule 3: IF kx  is 2A  or 3A  THEN ky  is 3B ,                       (24) 
       Defuzzification   
        )}()()({)}()({[

32121 21 kAkAkAkAkAk xxxyxxyy µµµµµ ++++=  

                )](2)(3)(2/[)}]()({
321323 kAkAkAkAkA xxxxxy µµµµµ ++++ .       (25) 

      (Inference 3) 
       IF-THEN rule      Rule 1: IF kx  is 1A  or 2A  THEN ky  is 1B  
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                                      Rule 2: IF kx  is 2A  THEN ky  is 2B  
                                      Rule 3: IF kx  is 2A  or 3A  THEN ky  is 3B ,                    (26) 
        Defuzzification    
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One of the estimation results in the case of adopting TALqL ,  and TAL ,50  as the 

state variable kx  and the observation ky  contaminated by a background noise and 
applying the fuzzy inference 1 is shown in Fig.1. The estimation result shows a good 
agreement with the true values. For comparison, the extended Kalman filter [7] is also 
applied to the observed data after introducing a linear system model: 

                   kkkkk vxy γβ += ,                                                                    (28) 
                   kkk GuFxx +=+1 ,   kk ββ =+1 ,   kk γγ =+1 .                         (29) 

In (28) and (29), kβ  and kγ  are unknown parameters to be estimated simultaneously 
with the state variable kx , and kv , ku  are random noises with mean 0 and variance 1. 
Tow parameters F  and G  are estimated by use of auto-correlation technique [1].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                      Figure 1 – State estimation results for TALeqL ,  based on the observation of     

TAL ,50  contaminated by a background noise  (–; observations,   ∗ ; true values,  
•  ; estimated results by the proposed method). 
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Table 1 – Root mean squared error of the estimation in [dBA]. 
State 
Variable 

Inference 1 Inference 2 Inference 3 Extended 
Kalman Filter 

TALeqL ,  0.894 0.977 0.885 1.36 

TAL ,50  1.04 1.50 0.954 1.47 
 
 

The squared sum of the estimation error is shown in Table 1.  It is obvious that 
the proposed method based on the use of fuzzy theory shows more accurate estimation 
than the results based on the method introducing usual linear system model like (28) 
and (29). Especially, the results by the inference 3 show the most precise estimation 
among the results by the proposed methods based on fuzzy inference and the extended 
Kalman filter. 

CONCLUSIONS 

In this study, a state estimation method for sound environment system with uncertainty 
has been theoretically proposed by introducing the fuzzy inference. More specifically, 
after considering the relationship between the state variable and observed evaluation 
quantities as the sound environment system containing uncertainty, a recursive 
estimation algorithm for noise evaluation quantities of the specific signal based on the 
observed evaluation quantities under the existence of a background noise has been 
derived.  Furthermore, by applying the proposed method to the actually observed data 
of road traffic noise in sound environment, the effectiveness of the theory has been 
confirmed experimentally too. 
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