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Abstract 
Circular and annular plates are widely used in machinery as basic components. Their torsional 
vibration behaviour is studied in the paper. An analytical model is developed and the natural 
frequencies and mode shapes are calculated for the torsional vibration under different boundary 
conditions. Results show that the torsional vibration behaviour of circular and annular plates is 
different compared with that of circular shafts. The torque moment in annular plates is 
transmitted via ring layers from the inner ring to outer ring and vice versa. In addition, the 
torsional vibration magnitude in terms of the angular displacement decreases with increasing 
radius. This can be explained by the fact that when the vibration energy is transmitted from the 
inner ring to outer ring, the circle becomes larger and the energy density becomes lower.  

INTRODUCTION 

Vibration of circular and annular plates has extensively been studied from the aspects 
of structure dynamics. Study on the torsional vibration behaviour usually employs a 
three-dimensional model and is often combined with flexural and axial vibration of the 
plates. Based on the Ritz method, Leissa and So [1, 2] calculated the free vibration 
frequencies of solid circular cylinders using a Fourier series in the circumferential 
direction and algebraic polynomials in the radial and axial direction as the admissible 
displacement functions. Using similar displacement functions, the Ritz method was 
applied in a 3-D analysis to obtain natural frequencies for thick circular and annular 
plates [3] and for the linearly tapered, annular plates [4]. In [1-4] the torsional vibration 
behaviour was not specifically be investigated, but was included as the axisymmetric 
vibration modes, although exact solutions were given in [1] for the torsional modes of 
the cylinders. Recently, Lu et al [5] studied torsional vibration of bellows using an 
equivalent thin-walled pipe model，but the torsional vibration behaviour of the annular 
plate components was not considered. 
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 Torsional vibration of thin circular and annular plates is different from that of 
slender rods, although they both are axisymmetric. In thin annular plates the torque 
moment is transmitted via ring layers from the inner ring to outer ring or from the outer 
ring to inner ring, whereas in slender rods it is transmitted through cross-sections from 
one end to another. Solutions for the thin circular and annular plates are less difficult to 
achieve because of the simplicity of the displacements for the torsional modes. Of the 
polar coordinates (r, θ), the circumferential one (θ) may be uncoupled in the solution 
[1], and the resulting analysis is only one-dimensional. This permits analytical 
solutions for the torsional modes of the thin circular and annular plates. 

In this paper the governing equation for torsional vibration of thin circular and 
annular plates is derived. Then the torsional natural frequencies and mode shapes are 
calculated for four sets of different boundary conditions. The torsional vibration 
behaviour of thin circular and annular plates is analyzed to obtain the physical insight.  

EQUATION OF MOTION 

The torsion problem of thin circular and annular plates can be modelled as a plane 
stress problem. The element equilibrium equations for the plane stress or strain in the 
polar coordinates (r, θ) are given as [6] 
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where σr and σθ are the normal stress in the radial and circumferential direction 
respectively. τrθ is the shear stress. R and S are the body force in the radial and 
circumferential direction respectively. 

For the free torsional vibration of circular and annular plates both the normal 
stress and the shear stress may exist. The normal stress can be caused by the inertial 
force in the radial direction (represented by R in (1-a)), e.g. the centrifugal force, due to 
the circular motion of the plate. The shear stress can be caused by the inertial force in 
the circumferential direction (represented by S in (1-b)). For torsional vibration of 
circular and annular plates the circumferential wave number is equal to zero and the 
vibration modes are axisymmetric [1-4]. As a result, the shear, normal stress and strain 
are axisymmetric and vary only with the radial direction of the plates. The equilibrium 
equations (1-a) and (1-b) can therefore be simplified to, respectively, 
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Equations (2-a) and (2-b) now become uncoupled from each other, i.e. the 
inertial forces in the radial direction due to the circular motion of the plates cause only 
the normal stress and strain, and the inertial forces in the circumferential direction 
cause only the shear stress and strain. On the Base of the above analysis, the torque 
moment in a vibrating circular or annular plate can be assumed to be transmitted via 
ring layers from the inner ring to the outer ring and vice versa. The torsional vibration 
of each ring results from the shear stress in the circumferential direction. The shear 
strain in each ring layer can be considered to be of pure shearing strain, and their values 
are constant on each ring layer, although they vary with radius of the ring. 
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As the torque moment in a torsionally vibrating, circular or annular plate is 
transmitted via ring layers and the shear strain and stress on each ring is constant, an 
isolated ring in a circular or annular plate can be chosen as the basic element to derive 
the equation of motion for torsional vibration. A ring layer in an annular plate is 
schematically shown in Figure 1(a), where a and b are the inner and outer radius of the 
annular plate respectively. Considering an isolated ring from the annular plate at radius 
r, the torque moments applied to the inner and outer surfaces of the ring are denoted by 
T and drrTT ∂∂+ , respectively, as shown in Figure. 1(b). The torque moment T can 
be calculated according to the shear stress on the inner ring surface and is given by 
      θδτπ rrT 22= ,        (3) 
where δ is the plate thickness and τrθ is the shear stress. 

According to Newton’s second law, the equation of motion for torsional 
vibration of the ring layer can be written as 
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where φ is the angular displacement of the ring, ρ is the density of the plate, Ip is the 
rotational inertia moment of the ring about the plate centre O and can be calculated by 
      drrI p δπ 32= .        (5) 

Because of the axisymmetric properties, each small sector of the ring is subjected 
to the same shear stress and strain. The shear stress and strain for an arbitrary element 
of the ring is schematically shown in Figure 1(c), where the stresses on the side 
surfaces of the element are not shown. The relationship between the shear stress τrθ and 
strain γrθ is given by Hooke’s law 

     θθ γτ rr G= ,          (6) 
where G is the shear modulus. 

Another relationship to be used here is between the shear strain γrθ and the 
angular displacement φ of the element of the ring. It can be derived from the geometry 
relationship in the polar coordinates (r, θ) between the shear strain and the translational 
displacements [6]: 
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where u denotes the radial displacement and v denotes the circumferential 
displacement and is given by 
       ϕrv = .        (8) 

As the shear strain γrθ is axisymmetric, equation (7) can be given in the form 

       
r
v

r
v

r −
∂
∂

=θγ .        (9) 

Substituting equation (8) into equation (9) results in the relationship between the shear 
strain and angular displacement: 
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Using equations (6) and (10) the torque moment T applied to the inner ring 
surface can be written as 

      
r
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Its derivative with respective to radius r is derived as 
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Finally, substituting equations (5) and (12) for Ip and rT ∂∂  in equation (4), 
respectively, the equation of motion for the torsional vibration of an annular plate can 
be written as 
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When the radius r is close to zero, 3/r reaches infinite and equation (13) becomes 
trivial. This is for the case of a circular plate. 

NATURAL FREQUENCIES AND MODE SHAPES 

When a circular or annular plate vibrates in one of its torsional modes, the solution to 
equation (13) may be taken in the form 

tier ωϕ )(Φ= ,      (14) 
where ω is the angular frequency, Φ(r) represents a function of r that defines the 
natural mode shape of torsional vibration of the circular or annular plate. Substituting 
equation (14) into equation (13) yields 
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where     c G ρ=        (16) 
is the torsional wave propagating speed in the radial direction, which is the same as the 
torsional wave speed in a uniform rod propagating in the axial direction. 
 Introducing a non-dimensional variable x r b= , and substituting x for r in 
equation (15) results in 
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where     k b
c
ω

=        (18) 

is the total wave number within radius b. 
 Equation (17) is similar to a single degree of freedom vibration system. The 
second term in equation (17) works as a damping, with the damping coefficient 3/x 
varying inverse-proportionally with x. Thus the solution to Φ is expected to decay with 
increasing the non-dimensional distance x, although there is no analytical solution for 
equation (17). 
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 Equation (17) is to be solved using a numerical method under the following four 
sets of different boundary conditions: 

1.   Inner ring free and outer ring free (free-free) 
,   0    and    1,    0x a b d dx x d dx= Φ = = Φ =  

2.   Inner ring free and outer ring clamped (free-clamped) 
,   0    and    1,    0x a b d dx x= Φ = = Φ =  

3.   Inner ring clamped and outer ring free (clamped-free) 
,   0    and    1,    0x a b x d dx= Φ = = Φ =  

4.   Inner ring clamped and outer ring clamped (clamped-clamped) 
,   0    and    1,    0x a b x= Φ = = Φ =  

Equation (17) is solved using the fourth order Runge-Kutta method under the 
four sets of boundary conditions. Numerical integrations start from x = a/b, where the 
corresponding boundary conditions are applied as the initial values for Φ and dΦ/dx. 
Different values for k are tried in the calculations in order to meet the corresponding 
boundary conditions at x = 1. Once the boundary conditions at x = 1 are satisfied by the 
value chosen for k, the solution is obtained. The natural frequencies of the torsional 
vibration can be determined via equation (18) according to k, whereas the mode shapes 
are plotted using the numerical solutions calculated for Φ at each x. For the free-free 
boundary condition there is a rigid body mode that can directly be derived from 
equation (17), with the natural frequency being zero (wave number k = 0) and the mode 
shape function Φ = constant. 

RESULTS 

The natural frequencies and mode shapes of torsional vibration are calculated under the 
four sets of boundary conditions. The results for the natural frequencies are listed in 
Table 1 in terms of wave number k for the first three vibration modes (except the rigid 
body mode). The ratios of the inner to outer radius of the annular plates in the 
calculations are chosen to be 0.01, 0.25, 0.50 and 0.80. The annular plate with ratio 
0.01 approximately represents a circular plate. The outer radius of the annular plates is 
chosen to be b = 100 and the plate thickness is unity. The Young’s modulus of the plate 
material is 2.1×1011 N/m2 and the Poisson’s ratio is 0.3. The material density is 7800 
kg/m3. 

The natural frequencies can be seen from Table 1 to increase with the ratio of the 
inner to outer radius for all the boundary conditions considered. The reason for this is 
that the torsional stiffness of an annular plate increases with radius. For the plate with 
ratio 0.01, which is approximately regarded as a circular plate, the natural frequencies 
are almost the same under the free-free and clamped-free boundary conditions, and 
under the free-clamped and clamped-clamped boundary conditions as well. This is 
because the torsional stiffness at the inner radius is very small if the inner radius is 
small. Thus the clamped boundary condition at the small inner radius results in similar 
effects to those from the free boundary condition. When the inner radius of an annular 
plate increases and becomes larger, the two different boundary conditions at the inner 
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radius cause different effects on the natural frequencies. This can be observed from 
Table 1. 

The torsional vibration mode shapes calculated are plotted in Figures. 2 and 3 for 
the free-free and clamped-free boundary conditions respectively. The mode shapes are 
shown for the first three vibration modes. All the mode shapes show a decaying 
behaviour with increasing x in terms of the angular displacement magnitude. The decay 
rate becomes lower with increasing ratio a/b of the inner to outer radius. This decaying 
behaviour can be explained by the governing equation, equation (17), where the 
damping coefficient 3/x varies inverse-proportionally with x. Thus a smaller ratio a/b 
causes higher damping effects, whereas a lager ratio a/b results in smaller damping 
effects. 

Comparing the mode shapes under the free-free and clamped-free boundary 
conditions of the annular plates with a/b = 0.01, the angular vibration magnitudes rise 
dramatically from x = 0.01 to about x = 0.05 under the clamped-free boundary 
conditions, see Figure. 3(a), and then they vary with x similarly to those under the 
free-free boundary conditions. This is because of the small torsional stiffness at the 
small inner radius for the annular plates with a/b = 0.01. Thus the natural frequencies 
under the two boundary conditions are almost the same, as analyzed before. 

CONCLUSIONS 

Torsional vibration of circular and annular plates has been studied. An analytical model 
has been developed using the axisymmetric property of the torsional vibration. The 
results show that the torsional vibration behaviour of circular and annular plates is 
different compared with that of slender rods. The torque moment in circular and 
annular plates is transmitted via ring layers from the inner ring to outer ring or from the 
outer ring to inner ring, whereas in slender rods it is transmitted from one end to 
another through the cross-sections. As the torsional stiffness of annular plates increases 
with radius, the vibration magnitude in terms of the angular displacement decreases 
with increasing radius. This can be explained by the fact that when the vibration energy 
is transmitted from the inner ring to outer ring, the circle becomes larger and the energy 
density becomes lower. It is similar to the situation of spherical wave propagation from 
its source. 
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Table 1.  Natural frequencies of torsional vibration of annular plates 

ρ
ω G

b
kn

n = ,  n = 1, 2, 3, … Boundary 
conditions b

a  

k1 k2 k3 

0.01 5.14 11.62 14.80 
0.25 5.32 9.14 13.12 
0.50 6.81 12.86 19.05 

free-free 

0.80 15.86 31.49 47.17 
0.01 3.83 7.02 10.17 
0.25 3.90 7.45 11.29 
0.50 4.55 10.09 16.13 

free-clamped 

0.80 8.95 23.97 39.52 
0.01 5.14 11.65 14.84 
0.25 6.17 10.41 14.62 
0.50 9.18 15.56 21.89 

clamped-free 

0.80 23.26 39.09 54.85 
0.01 3.83 7.03 10.20 
0.25 4.45 8.54 12.68 
0.50 6.39 12.62 18.89 

clamped-clamped 

0.80 15.74 31.43 47.13 
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Figure 1 – Torque moment, shear stress and strain in annular plate.
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Figure 2 – Torsional vibration mode shapes of annular plates under free-free boundary 
conditions. (a) a/b = 0.01, (b) a/b = 0.25, (c) a/b = 0.5, (d) a/b = 0.8. — 1st order mode shape, 
– – 2nd order mode shape, – · – 3rd order mode shape. 
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Figure 3 – Torsional vibration mode shapes of annular plates under clamped-free boundary 
conditions, key as for Figure 2. 
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