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Abstract 
This paper derives convergence conditions for harmonic control algorithms when applied in 
instantaneous update form. Although similar results have previously been obtained for 
specific controller forms, for example in the context of a Multiple Error LMS algorithm, an 
alternative approach is used here that is applicable to a wide class of algorithms. The 
derivations are carried out for a square multivariable LTI control path and the algorithm 
includes the use of a general operator and a relaxation gain. The inclusion of the latter enables 
a simple stability condition to be stated. The convergence results are demonstrated using a 
multivariable naval vibration isolation test rig. The experimental results validate the 
theoretical findings and show that the algorithm provides a 40 dB reduction for a single-tone 
disturbance. 

INTRODUCTION 

Harmonic control is a well-known approach for actively reducing the effect of 
periodic disturbances in acoustics and mechanical vibration. In its standard form  [1], 
the control approach is implemented iteratively using a steady-state approach where, 
following each corrective control action, the algorithm waits for transients to die out 
before executing the next update.  

The disadvantage from using the steady-state approach is that the controller 
applies pure feedforward control between updates, where the time taken before the 
next corrective action can, depending on the system dynamics, be several 
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milliseconds. Furthermore, long time periods between updates leads to a slow 
convergence rate for the algorithm. 

In order to avoid these problems it is quite common, in industrial practice, to 
not wait for a steady-state before applying a corrective action but to implement the 
algorithm at each sampling point. In this paper this approach is referred to as 
"instantaneous harmonic control". The higher harmonic control approach, developed 
initially for helicopter vibration control was designed to operate in this way and it has 
been shown in  [2] that this is equivalent to a classical feedback compensator with 
infinite gain at the disturbance frequency, thereby enabling standard stability analysis. 
It was also pointed out in  [4] that this result was similar to that obtained in  [5] for the 
case of a multiple error LMS algorithm operating on a sinusoidal reference. Both of 
these, however, are very specific implementations of instantaneous algorithms. In this 
paper a convergence proof is derived for a very general class of multiple channel 
harmonic algorithms which is validated using a multiple degree of freedom vibration 
isolation mount.  

PRELIMINARIES 

The starting point is the following discrete-time plant model 
 
 )()()()()()()( tytytdqGtuqGty dcdc +=+=  (1) 
 
where Gc(q) is the control channel, Gd(q) is the disturbance channel, u(t) is the control 
input and d(t) is the disturbance. The symbol q-1 stands for the standard left-shift 
operator. In the sequel it is assumed that d(t) contains only a single tone, i.e. 
d(t)=Acos(ω0t+φ) for some A, ω0 and φ (the case of multiple harmonic control is 
considered in  [6]). The vibration control design problem is to find a feedback 
controller that drives to output y(t) to zero under the assumption of a one-tone 
disturbance. From now on it is assumed that Gc(q) is a multivariable and square 
system and it is both controllable and observable.  
 In harmonic control the idea is to use a steady-state approach whereby the plant 
(1) is represented in the frequency domain by 
 
 ( ) ( ) ( ) ( ) ( )o o o o oj j j j j

c dy e G e u e G e d eω ω ω ω ω= +  (2) 
 
When ( )oj

dG e ω  is known and ( )ojd e ω can be measured, then an obvious feedforward 
solution for ( )oju e ω results from solving equation (2) for ( ) 0ojy e ω = . However in most 
situations this is not the case and a number of alternative iterative feedback solutions 
have been proposed [ [1], [7]]; these have the generic form 
 
 ( ) ( 1) ( )u k u k Cy kα β= − −  (3) 
 
Where k represents an iteration or update index (following steady state), β>0 is a 
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scalar learning or convergence gain, α is a relaxation or leakage gain (0<α≤1)and C 
is a complex matrix, typically chosen to be 
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Note that for ease of exposition it has been assumed that α  is a scalar but it can also 
represent the situation where the cost function 
 
 ( ) ( )o oj j

Q R
J y e u eω ω= +  (5) 

 
is minimized. For this case, under the assumption that R rI= , then 1 rα β= − and 

0( )j H
cC G e Qω=  . A number of convergence results exist for the steady state 

approach  [1]; convergence analysis of the instantaneous implementation of (3) is 
presented in the following section.  

INSTANTANEOUS IMPLEMENTATION 

The first step in the instantaneous algorithm is to approximate the Fourier coefficient 
with its instantaneous value using the equation 
 
 
 tjetyty 0)()( ω−=  (6) 
 
where tje 0ω−  is a complex reference signal. Based on this instantaneous estimate, the 
control signal in the frequency domain is updated using the formula 
 
 ˆ ˆ( ) ( 1) ( )u t u t Cy tα β= − −  (7) 
 
which is equivalent to equation (3) but now the update interval is the sample rate T. 
 Finally, the control signal is transformed back to the time domain using an 
"instantaneous" inverse Fourier formula 
 
 { })(Re2)(ˆ)(ˆ)( 1
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Combining the equations for u1(t) and u(t) results in 
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where )(ˆ:)(ˆ1 tutu = . 
 
In a similar manner, the difference equation for u2(t) becomes 
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Combing these two interconnected systems gives the following multivariable 
dynamic system (where the elements in the partition are also matrices) 
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(11) 

 
Because d(t) is a bounded function, it is a well-know result that the system (11) is 
BIBO stable, if the solutions of (in terms of q) 
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are inside the unit circle. Based on these derivations we get the following main result 
 
Proposition 1: The harmonic controller is BIBO stable if for a given β the solutions 
of the equation (12) as a function of q are inside the unit circle.  
 
However, this result can be developed further in the following way: as a starting 
point, it is a well-known result that for a block-partitioned matrix  
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if C and D commute, i.e. CD=DC. This is obviously the case in (12),  because 
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It follows that 
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Dividing this equation with 1 1 1 2 2(1 )(1 ) 1 2 cos( )o oj T j T

oe q e q T q qω ωα α α ω α−− − − −− − = − +  results 
in 
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This is a standard multivariable characteristic equation for the plant ( )cG q  with a 
compensator1 
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Note that with 1α =  and ( )oj

cC G e ω= , equation (17) is entirely equivalent to that 
obtained in  [5] for the multiple error LMS algorithm with a sinusoidal reference. 
 On the assumption that ( )cG q  is stable and 1α < , there cannot be any unstable 
pole-zero cancellation between ( )cG q and ( )K q so internal stability in terms of β can 
be determined from equation (16) using any suitable method from multivariable 
control theory. Moreover under this assumption the following proposition can be 
developed from the small gain theorem  [8]. 
 
Proposition 2: The instantaneous harmonic algorithm will be stable if the learning 

                                                 
1 Note that the matrices appear in the order ( ) ( )cK q G q  as equation (11) leads to an evaluation of input 
sensitivity. 
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gain is selected according to  
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It is clear that with α  close to unity, this result will be highly conservative and an 
alternative approach using, for example, the Generalized Nyquist Theorem may be 
preferred. The approach also limits the maximum loop gain to unity thereby negating 
the disturbance attenuation properties of the algorithm. These results will be 
illustrated further in the following section.  
 The condition for the stability of the closed-loop system is naturally important, 
however, it does not tell anything about performance (i.e. where does u(t) and 
therefore y(t) converge to?). In order to analyse performance, note that closed-loop 
stability enables the asymptotic properties to be investigated using steady-state 
analysis. As a result equation (11) can be re-written as2  
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The first row of equation (19) is (it is assumed that both C and )( oj

c eG ω  are 
invertible) 
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c
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or equivalently 

 )()()()( 1 oooo jj
d

j
c

j edeGeGeu ωωωω −−=  (21) 
 
which is the result that would have been obtained from the feedforward solution of 
equation (2). The main results are summarised in the following proposition: 
 
Proposition 3: Assume that β has been chosen so that it satisfies the stability 
condition of Proposition 1, 1α =  and d(t) is a sinusoidal signal, i.e. d(t)=Acos(ω0t+φ) 
for some A, ω0 and φ. In this case the instantaneous harmonic control algorithm will 
drive y(t) to zero asymptotically.  
 
Note that if d(t) is not a pure sinusoidal signal or 1α ≠ , the instantaneous harmonic 
control algorithm will still be BIBO stable if it satisfies the stability condition of 
Proposition 1 or 2, but it will not drive y(t) to zero.  

                                                 
2 Note due to space limitations only the case of  1α =  is considered but the approach can be extended 
to other cases. 
 



ICSV13, July 2-6, 2006, Vienna, Austria 

EXPERIMENTAL RESULTS 

The results of the previous section are demonstrated using the approach to design a 
controller for the active vibration isolation mount shown in Figure 1. The system has 
been used by the authors in previous studies on repetitive control  [9] [10]. This was 
originally developed in association with BAE Systems Marine during the late 1980’s.  
The main purpose of this mount is for testing active isolation schemes for large 
marine machinery rafts.  The system consists of a central standard passive elastomeric 
Naval mount around which are located 6 Ling 30N electro-dynamic shakers. These 
apply forces in parallel to the passive mount and the “stinger” attachments are 
arranged in a hexapod or Stewart platform style such that control can be applied to all 
six degrees of freedom (three orthogonal translational forces and three orthogonal 
torques). Located on top of the mount is an additional inertial shaker used to inject 
disturbance forces. The peak of the transmissibility curve occurs at 60Hz (mount 
resonance) and so this frequency is used in the study for the harmonic disturbance.   
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Figure 1 – Experimental active mount and magnitude of maximum eigenvalue 
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Figure 2 – Experimental system responses: Sum Acceleration 

 
The right of Figure 1 shows the magnitude of the maximum eigenvalue of the loop 
transfer function as a function of frequency and with a relaxation gain close to unity. 
The figure is constructed from a calculation that utilises an experimentally measured 
frequency response function for the system and therefore is limited to a maximum 
frequency of 200Hz. In the region of 60Hz the phase remains within ±90° however a 
crossover occurs in the region of 200Hz and so a maximum limit is 31 10β −< × . To 
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give some stability margin (in part due to the fact that the magnitude beyond 200Hz is 
unknown) a value of  55 10β −= ×  is used. The resulting controller is, as predicted, 
stable and convergence is rapid (left of Figure 2). The right hand figure shows the 
power spectral density of the sum acceleration without control and following 
convergence. The conservatism of proposition 2 is demonstrated by the fact that this 
requires 71 10β −< × . 

CONCLUSIONS  

This paper has derived rigorous convergence conditions for an instantaneous 
implementation of a wide class of harmonic control algorithms. One form of the 
algorithm has been implemented on a multivariable vibration isolation test rig, and 
shown to be capable of producing a 40dB attenuation of a single-tone disturbance. 
This result can be considered as exceptionally good for such an application and also 
validates the theoretical findings. As some conservatism was used in the final gain 
selection, future work will concentrate on expanding the analysis to include 
robustness considerations.  
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