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Abstract
An unusual and unique marriage of high level mathematics and metrology has led to the
design and construction of a device that measures instantaneously the vector acoustic inten-
sity throughout a cubic volume. In this volume the device provides either the instantaneous
time domain or the frequency domain intensity field. Called the Volumetric Acoustic Intensity
Probe (VAIP) this device provides the ability to locate sources of sound in the interior spaces
(or exterior) of ships, military vehicles, aircraft, etc, by mapping the magnitude and direction
of the flow of acoustic intensity throughout the measurement volume in the frequency band
from 0 to 1400 Hz. The probe consists of a nearly transparent spherical array of 50 micro-
phones optimally positioned on an imaginary spherical surface and uses spherical NAH to
convert the microphone pressures into a vector intensity field in a volume centered on the
sphere origin. The array has a radius of 0.2m and the reconstruction volume is limited to a
maximum radius of 0.4m. Front-end signal processing for the VAIP is designed to deal with
random, non-stationary acoustic fields by creating partial field holograms, constructed using
either SVD or Cholesky decomposition methods from ensemble averages of the cross-spectral
densities with fixed references or with vertex array microphones. In a major application of
this approach, experimental results taken during the flight of a Boeing 777 aircraft will be
discussed. These results show excellent success at locating the dominant sound sources near
the array.

INTRODUCTION

Spherical microphone arrays have a long history of use in acoustics and often the theory
of operation of these systems, like the probe discussed here, is based in spherical harmonic
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decompositions. Two early implementations were significant in acoustics[1, 2] and a very re-
cent paper provides a good review.[3] However, almost all of this research has been aimed at
a prediction of the far-field from near-field measurements, a forward problem that is mathe-
matically well posed. In the research presented here no far-field assumption is made and the
more difficult inverse problem is solved - prediction of the sound field between the array and
the sources of sound. However, unlike the popular single axis and multiple axis vector inten-
sity probes that provide high measurement accuracy at a single point, the VAIP provides the
vector intensity at hundreds of points instantaneously, trading off high accuracy to image the
intensity vector field throughout a sizable volume.

THEORY OF OPERATION

The spherical coordinate system is by far the ideal for the implementation of nearfield acous-
tical holography (NAH) as the finite aperture problem is nonexistent. A photograph of the 50
element spherical array is shown in fig. l. A spherical reconstruction volume V , defined by

Figure 1: The NRL Spherical Array with 50 microphones set up for noise measurements inside
a Boeing 777 aircraft

spherical coordinates r = (r, θ, φ) ∈ V and of extent 0 ≤ r ≤ rmax, is source free except
for a ”transparent” microphone array structure with sensors located at r = a < rmax. The
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acoustic pressure p∞(r, ω) is approximated anywhere in V by a finite sum given by[4]

p∞(r, ω) ≈ pN (r, ω) ≡
N∑

n=0

jn(kr)
jn(ka)

n∑
m=−n

Pmn(a, ω)Y m
n (θ, φ), (1)

where Y m
n (θ, φ) are orthonormal spherical harmonics, jn are spherical Bessel functions and

k = ω/c. This approximation becomes exact in the limit as N →∞. Measurements are made
in the time domain and p∞ is derived from a temporal Fourier transform of the measured pres-
sure in the usual way. The unknowns Pmn in this equation are called the Fourier coefficients.
The acoustic velocity vector is given in terms of the unknown Fourier coefficients[4]:

vθ(r, ω) =
1

iωρ

N∑

n=0

jn(kr)
rjn(ka)

n∑
m=−n

Pmn
∂Y m

n (θ, φ)
∂θ

(2)

vφ(r, ω) =
1

iωρ

N∑

n=0

jn(kr)
rjn(ka)

n∑
m=−n

Pmn
imY m

n (θ, φ)
sin θ

(3)

vR(r, ω) =
1

iρc

N∑

n=0

j′n(kr)
jn(ka)

n∑
m=−n

PmnY m
n (θ, φ), (4)

where the equalities hold strictly only in the limit as N →∞. The active intensity vector ~I in
spherical coordinates is then determined by the usual expression using unit vectors ê:

~I(r, ω) =
1
2
<[p∗∞(vθêθ + vφêφ + vRêR)]. (5)

The unknown Fourier coefficients Pmn(a, ω) are determined by integration of the pres-
sure field at r = a over a sphere:

Pmn(a, ω) ≡
∫∫

p∞(a, θ, φ, ω)Y m
n (θ, φ)∗dΩ, (6)

with dΩ ≡ sin θdθdφ. The spherical array is designed so that the microphones are located at
the quadrature points (θj , φj), j = 1, · · · , 50, with corresponding integration weights wj of
an efficient algorithm to compute the surface integration in (6). We use an efficient numerical
quadrature algorithm derived by Lebedev[5, 6]. This algorithm is invariant with respect to
octahedral symmetry, that is, the microphone locations on the spherical cap subtending one of
the eight faces of the octahedron are identical (after rotation) on the other seven faces. The 50
element algorithm is important by guaranteeing an exact integration of spherical harmonics
when p∞ = Y m′

n′ with (6) replaced by the following relation:

50∑

j=1

wjY
m′
n′ (θj , φj)Y m

n (θj , φj)∗ = δmm′δnn′ , if n + n′ ≤ 11

where δ is the Kronecker delta. The restriction on n in this formula is critical and implies that
exact values of Pmn are determined (given noiseless pressure data) only when the pressure
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Figure 2: Volumetric intensity Output from the VAIP at 250 Hz and 25dB SNR for a point
source at 1.0m is shown on the left versus the exact field shown on the right both plotted on
the same scale. The intensity vectors are plotted on a linear scale.

field at r = a is composed of spherical harmonics such that n ≤ 5. However, even when n = 6
most of the orthogonality still remains, so the quadrature algorithm breaks down “gracefully”.
Given this the quadrature algorithm (6) is approximated by P̂mn,

P̂mn(a, ω) =
50∑

j=1

wjp∞(a, θj , φj , ω)Y m
n (θj , φj)∗. (7)

where P̂mn = Pm′n′δmm′δnn′ when n+n′ ≤ 11. Thus we are guaranteed that P̂mn = Pmn as
long as n ≤ 5, so that the first 36 Fourier coefficients are determined without any integration
error. For the computation of the pressure and velocity vector in (1) and (4) we choose to
use only these accurately computed Fourier coefficients and thus these sums are truncated to
N ≤ 5. We found that there was no gain in accuracy if we used the n = 6 approximated
Fourier coefficients.

The quadrature weights and locations in cartesian coordinates are easily derived using
Lebedev’s parameters listed under 11.1 in paper reference [6] and are not reproduced here for
brevity.

Simulation Example: Volumetric intensity reconstruction for a point source

An example of the reconstructed intensity fields compared with the exact results for a point
source located on the y-axis 1 meter from the origin is shown in fig. 2. Noise was added to the
simulated data to give a 25dB signal to noise ratio and the intensity is plotted in the volume
r ≤ 0.4. The cones point to the direction of the intensity vector, and the length (and width)
of the cone is proportional to the linear magnitude of the intensity. The center of the base
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of the cone is a point in a cubic lattice specifying the locations of the intensity vectors. The
lattice spacing in each direction is 0.08 m. The 50 elements (small circles) of the measurement
sphere are superimposed in each plot for reference. These results reveal that the direction of
the point source (located on axis at y=1.0) is correctly indicated by the reconstructed field
(left-hand plots) and the actual location can be found by the intersection of lines collinear
with the intensity vectors near the source. Root mean square intensity errors in this case were
7% for r < 0.2, 12% for 0.2 < r < 0.3 and 20% for 0.3 < r < 0.4. Errors always increase
with r since reconstruction of the field outside the array is an ill-posed inverse problem. A
very simple regularization filter in n was used to minimize the errors constructed with a brick
wall filter using a a series cutoff of N = 3 in (1) and (4).

FRONT-END SIGNAL PROCESSING

We summarize the front end theory briefly here and the reader is directed to the references for
further information.[9, 10, 11] This theory is used to expand the modes of operation of the
VAIP. Although the VAIP can reconstruct intensity fields without reference transducers, due
to the instantaneous measurement of the pressure data, and identify noise sources by display
of the directional intensity vectors radiated from those sources, it is possible to further sep-
arate multiple noise sources by using partial field decomposition techniques described in the
references. The partial field approach was developed by Hald[9] for NAH and has since found
a multitude of industrial applications through the use of the STSF (spatial transformation of
sound fields) approach.

Assume M reference transducers recorded simultaneously and Fourier transformed
to provide raw spectra represented by X(ω) ≡ (X1X2 · · ·XM )t (t is transpose) along
with the 50 microphone raw spectra P(ω) ≡ (P1P2 · · ·P50)t with accompanying noise
N(ω) ≡ (N1N2 · · ·N50)t. The reference transducers are generally attached to candidate
(source) machines that are assumed to be random with Gaussian statistics, although they are
not necessarily incoherent to one another. A transfer function matrix H(50×M) with elements
Hij relates the pressure at the i’th microphone and the j’th reference through P = HX + N.

The autospectral density Spipi of the i’th microphone is given by an ensemble average
E of the raw spectra (using a long time series broken into shorter segments that are each
Fourier transformed) of the measured pressure

Spipi(ω) ≡ E[P ∗
i (ω)Pi(ω)] = HH

i SxxHi + Snini , (8)

Sxx ≡ E[X∗Xt], (9)

where Sxx is the M × M reference cross-spectral density matrix constructed using the en-
semble average of the outer products of X, Hi is the i’th row of H and the H superscript
represents conjugate transpose.

Partial field decomposition techniques all decompose the autospectral density function
of a microphone using an inner product of a to-be-determined partial field column vector Ψi

of length M , Ψi = (Ψ1iΨ2i · · ·ΨMi)t, that is, Spipi = ΨH
i Ψi + Snini . This decomposition
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can be accomplished by taking the square root of Sxx ≡
√

Sxx
H√Sxx, so that (8) becomes

Spipi(ω) = (
√

SxxHi)H
√

SxxHi + Snini .

The partial field components of the i’th microphone are Ψi ≡
√

SxxHi. A partial field matrix
Ψ is constructed from the Ψi column vectors using Ψ = (Ψ1Ψ2 · · ·Ψ50). The M rows of Ψ
form M partial field holograms, each processed separately for reconstruction of M volumetric
intensity fields.

There are two standard procedures for taking the square root of a matrix, the Cholesky
decomposition and the singular value decomposition (SVD) and we present results for the first
one in this paper. The Cholesky decomosition yields Sxx = THT where T is upper triangular
and

√
Sxx = T. It is important to note that in our research we found that the Cholesky

method gave identical results to the signal conditioning approach provided in Bendat and
Piersol[12] and in [13] A great deal of theory is provided in [12] about the signal conditioning
approach which can then be directly applied to understanding results from using the Cholesky
decomposition.

The transfer functions Hi are not of interest here and are eliminated by use of the
cross-spectral density column vector Sxpi

defined by

Sxpi
≡ E[X∗(ω)Pi(ω)] = E[X∗Xt]Hi = SxxHi (10)

(where Sxpi
is the i’th column of the cross-spectral density matrix Sxp) yielding Hi =

(Sxx)−1Sxpi
. With this elimination we obtain Ψi = (TH)−1Sxpi

.
An important characteristic of the Cholesky method, and not of the SVD approach, is

that the partial fields are dependent upon the order of the columns and rows of Sxp.[12] Thus
it is necessary to carry out some pre-analysis in the Cholesky approach to set up the order of
the references, choosing the most significant reference at a particular frequency to form the
first column of Sxp. We determine significance by choosing references that have the largest
coherence to the microphones, computing the average coherence γ2

xip of the i’th reference to
the 50 microphones:

γ2
xip ≡

1
50

50∑

j=1

γ2
xipj

, (11)

where γ2
xipj

≡ |Sxipj |2/(SxixiSpjpj ) which allows us to rank the references, xm, xn, · · · , xk,
with respect to average coherence for each frequency:

γ2
xmp > γ2

xnp > · · · > γ2
xkp. (12)

Here xm and xn are the references with the first and second largest average coherence, re-
spectively.

Given this ranking of references we reorder Sxx and Sxp so that the 1st row and column
corresponds to the highest rank reference (separate order for each frequency) and so on. The
full reconstruction equation becomes, Ψ = (TH)−1Sxp. The rows of Ψ(M×50) form M

separate holograms ranked in order of importance, each of which can be used to reconstruct
the volumetric intensity at a given frequency by replacing p∞(a, θj , φj , ω) in (6) with one of
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the rows and computing the intensity vector (5) on a cubic lattice, displaying the results as in
fig. 1.

EXPERIMENTAL APPLICATION

Figure 3: Two views of volumetric intensity results for the 1st partial field with maximum
coherence to the window mounted accelerometer. Result indicates that energy is entering the
cabin through the window as a result of a window resonance.

In a cooperative effort with NASA Langley and Boeing measurements were made with
the 50 element array inside a new Boeing 777 aircraft during test flights for the quiet technol-
ogy demonstrator program (QTD2).[14] Figure 1 shows the setup and reference accelerom-
eters can also be seen one attached to the window and two on the sidewall directly below. A
total of 14 references were used. The VAIP was extremely successful at locating unsuspected
noise sources in the aircraft. A typical result is shown in fig. 3 for 240 Hz a frequency at
which there was a maximum in the average SPL measured by the array. The pressure and ref-
erence data were processed using 200 ensembles each consisting of 2048 points (digitization
rate was 12kHz) and the matrices in (9) and (10) were constructed using all the references.
Thus 14 partial field holograms were obtained. We found that the only the first two or three
partial fields were significant, so that the analysis was not complicated by including so many
references. We have plotted the resulting first partial field in the figure corresponding to the
window accelerometer (the highest ranking reference in accordance with (12)).

SUMMARY

Many other aspects of operation for the VAIP were not discussed here due to limited space.
For example results can be averaged in 1/3 octave bands. Also each ensemble of pressure data
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can be processed to produce intensity reconstructions at 1024 frequencies every 0.17 seconds.
Inverse transform back to time yields instantaneous intensity vector displays updated every
0.17 s. Self referencing has been used using the microphones at the vertices of the array with
great success. We have also used principal component method (SVD) instead of Cholesky and
made comparisons between the two approaches. These results will be the subject of future
papers and talks. This work was supported by the Office of Naval Research.
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