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Abstract

The coefficient of nonlinearity’ = 1 + B/(2A) is of essential importance for the acoustic
wave propagation in single-phase gaseous media in thermodynamic equilibriaontrast
to the well-known perfect gases, which are characterized by valués-of, real gases fea-
turing very large values of specific heats and commonly referred to asflB€iE have the
distinguishing property thdt is found to become negative over a finite range of temperatures
and pressures. The existence of thermodynamic statesIwitt) in the dense gas regime
leads to the occurrence of phenomena which have no equivalent ingaealynamics. For
example, if the equilibrium state of the BZT fluid is chosen to be close to the tranbit®
I' = 0, the propagation of planar nonlinear sound waves is governed bygeBuequation
extended with a cubic nonlinearity term, which may result in the simultaneousagemeof
compression and rarefaction shocks. The analysis presented base$mn the properties of
acoustic waves transmitted through a BZT fluid contained in a rigid tube whianisected
to an array of Helmholtz resonators in its axial direction. Such a systers gaeto disper-
sion as well and, thus, the identification of physically acceptable discontnsautions in
the limit of vanishing dissipation and dispersion has to be approached kgceabkpegular-
ization principle: In contrast to the classical, non-dispersive caseanheradmissibility of a
discontinuity is ensured by the existence of a viscosity dominated inner strgkture, the
shocks are now generated as limits of diffusive-dispersive travelingsvad he thus obtained
shock admissibility criteria crucially depend on the precise ratio of dispetsidissipation
in the system. This may lead to wave solutions violating the well-known Oleinik gntnip
terion since their discontinuities emanate rather than absorb waves. Siglts stre termed
"non-classical”.
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INTRODUCTION

It is well known that in many physical problems the evolution of nonlinearesasan be
described by the so-called Korteweg-de Vries-Burgers (KdVB) éojuia
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if a balance between nonlinearity, dissipation, and dispersion exists.udovifghe nonlinear
effects characterized by the paramdtare dominant, i.e. in the the limit — 0 andy — 0,
the evolution equation reduces to the inviscid Burgers equation, with its farahalions,
in general, featuring regions of multivaluedness that have to be remagvidek insertion of

discontinuities according to the wave speed ordering principle

_df — m (2)

Tdw T [u]

B >0, (1)

Vb > Vs > Vwa; Vw

Herewv,, andv, denote, respectively, the wave speed and the shock speed, whild#ueists
b anda refer to states before (left of) and after (right of) the shock tidlenotes the jump
of the quantityA, i.e.[A] = A, — A,. The relationship (2), which is now commonly referred
to as the Lax (entropy) criterion [7], in general is considered to be assecy and suffi-
cient condition for admissible discontinuities such that they are stable andtddofate the
natural requirement that acceptable weak solutions must depend comstinoouthe initial
and boundary values. Each jump can thus be regarded as represedissgpative-dispersive
profile whose streamwise extent is so small compared to the characterisélength that it
collapses into a single point.

Furthermore, previous investigations dealing with nonlinear wave prdipagavolv-
ing dissipation and dispersion have also demonstrated that in some casesadiatiq flux
function f (u) appearing in the KdVB equatioh (1) has to be extended with an additionial cub

term:
2 3

Fu) = r% + EA%, e< 1. 3)

Examples include acoustic waves in fluid filled viscoelastic tubes [3], interanads in a two-
layer film flow [2], dust-acoustic waves in plasmas [8], and kinematic wavesispensions
of particles in fluids|[6]. The appearance of the additional cubic terrf is a direct con-
sequence of the fact that in these problems the nonlinearity parametery change sign
depending on the particular conditions imposed on the unperturbed staieu€l, the as-
ymptotic analysis which has led to Eq! (1) assuries O(1) and breaks down in the vicinity
of the transition point where the nonlinear parameter vanishes. Within abwetgbod where
I' =0(e), 0 < e < 1, small terms neglected so far become of the same order as the already
included quadratic correction term and a separate analysis is requitemiucing the new
(slow) time scald’ = ¢t and the parameteis = ['/e, B = B/e, andy = ~/e then yields the
modified Korteweg-de Vries-Burgers (mKdVB) equation
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In the limit of small dissipative as well as dispersive effectsfi.& O(1),A=0(1), ﬂ < 1,
and|9| < 1, Eq. (4) reduces to a scalar hyperbolic conservation law where thef fismot
convex, i.e.f” changes sign. The problem is then said to be characterized by the qresen
mixed nonlinearity.

In [6] and [10] it has been shown that if the conditign < 32 < 1 holds, the problem
of finding the appropriate shock admissibility criteria simplifies to the selectionrafaling
wave solution via the so-called vanishing viscosity approach. As pointethdd], such a
solution can be equivalently selected by using the Oleinik [9] entropy chitewibich for the
(non-convex) flux functiorf(u) from Eq. (3) reduces to

Vb = Vs = Vwa- (5)

In this limiting case, the jump criterion turns out to be equivalent to the Lax wpeeds
ordering principle[(2) in the generalized sense that for either the leff-btate or the right-
hand state of the shock the equality sign has to be included. Discontinuities with,,, or
Vs = Uy are calledsonic shockand represent the jumps of maximum possible strength, if
the state before or, respectively, the state after is fixed.

In the general case where (small) dissipation is balanced by (small) dspensw-
ever, this concept fails and the insertion of discontinuities in order to obtaisigally ac-
ceptable weak solutions has to be approached in the following way, sefd(&] The key
idea is to construct a traveling wave solution based on a dissipative-siispeggularization
which gives the jump conditions in the limit of small dissipation and dispersiompiizethe
plausibility of the geometric inequalities of Eg. (5), shocks may exist that et@aater than
absorb waves and, thus, violate the Oleinik criterion. Such shocks aredénon-classical”.

The consequence of the above discussion is that the possibilityxod in combination
with weak dispersive effects obviously provides new physical phenantegas dynamics
and acoustics and, thus, is also of great importance for the case ceddidge, namely, the
acoustic waves transmitted through a circular tube which) illed with a gas having an
acoustic nonlinearity parameter= 1 + B/(2A) that can change sign amj whose wall is
lined with an array of Helmholtz resonators, see Fig. 1.

PROBLEM FORMULATION

The propagation of nonlinear acoustic waves in a duct with an array loflvddtz resonators
has been extensively investigated in the past by Sugimoto and co-wakers.g! [11], [12].
According to [11], the system of equations governing the sound wadetén for the open
tube case shown in Fig. 1 can be written as:
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Here, the quantities andg are proportional to the pressurgsandp,. in the tube and the
cavities, respectively, whilérz andé,, measure the ratios of the boundary layer thickness to
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Figure 1: lllustration of an open tube
Helmholtz resonator with Helmholtz resonators.

the radius of the tunnel and that of the throat. In addition, the coupling e/ and
the tuning paramete® control the dispersive effects of the array of resonators, and tive ter
proportional tog describes the diffusivity of sound on the core region. Furthermpiend
x denote the retarded time measured in a frame moving with the linear sound skt a
far-field space variable, respectively.

For perfect gases with constant specific helats, (x + 1)/2 > 1, wherex represents
the ratio of the specific heats, and the fluid motion is said to exhibit positive reamify.
In this case, onlycompression shocksan form and propagate in the gas. The possibility
that alsorarefaction shockgsan form in real fluids, i.e. thdt might become negative, seems
to have been recognized first by Bethe [1] and independently by Zétkd14]. A class
of fluids involving gases with high specific heats can be identified for whiehctirvature
of the isentropes in the pressure-density state space is reversed eeaeilistence curve
in the vicinity of the critical point and, consequently,changes sign. More sophisticated
studies based on the Martin-Hou equation of state are due to Thompson -avatkeos,
see e.g. [13], who gave specific examples of such fluids, which inclydeotarbons and
fluorocarbons of moderate complexity. In recognition of these investigatitiids having
the distinguishing property that the fundamental derivative can chaggease commonly
referred to as BZT fluids. Furthermore, Kluwick [5] demonstrated thaeituilibrium state
of the BZT fluid is chosen to be in the neighborhood to the transition line wihete), and
thusT' = O(e), 0 < e < 1, the propagation of planar, weakly nonlinear acoustic waves in
rigid tubes is governed by a modified Burgers equation whi¢we has to be extended with
an additional cubic nonlinearity term. As a consequerf¢e) in Eq. (6) has to be replaced
with ef(u), with f(u) given by Eq.[(4).

Introducing the new scales and parameters

8 . K o K . &

X=¢—zK, T=cex, B:— ¥y=—, K=—, fp=— (7)
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and assuming that the viscoaisd the dispersive effects are small, the system (6) can be recast
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into (c.f. Eq.l(4))
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In analyzing the shock admissibility conditions of the wave solutions travelingein th
system (8), we shall concentrate on the case where the inner shatikistsuiare governed by
the diffusivity in the core region and the dispersion due to the array oheders. Inspection of
Egs. (8) then shows that within the spatial range = O(3) andAX = O(5'/2) consumed
by the inner shock profiles the boundary layer effects are negligibly smahe following,
therefore, the terms proportional (fg andé, will be omitted.

SHOCK ADMISSIBILTY

For convenience the paramet&rsnd A appearing in Eqsl (8) are eliminated by introducing
the suitably scaled quantities

A A -~ A -~ A% A3 - A
U:TU, = =q, X:TX, = =9, v = N K= K 9
s Q=% =X P=wh Y=Y = ()
Neglecting boundary layer effects, the system (8) then assumes theifmlom:
E?U oF ~82U X v Ul
— B —NQ, FU)= + —
or * 0X Toxs 2 6’
o 82Q = -
- — <1, < 1. 10
Zog2 gl (10)

In order to decide which jump discontinuities are admissible for weak solutibns o
Egs. (10) in the limity ~ 3? < 1, we study traveling wave solutions of the form

U, Q) — Uy for &— -0, (U,Q)—U, for &— occ. (11)

By using the scaled quantities

_i Ub+Ua_ _i Ub+Ua_ _\/6‘[[]”
G_[U]< 5 U>, H—[U]< 5 Q>, n= 12\@5 (12)

in place ofU, @ and¢, the shock structure problem reads

1
(G*-1)(B+G) =dG'+H", H= G—%H”, (G, H) — +1 for n — Foo, (13)
where "' “ denotes differentiation with respect toand

6 Uy + U, 24K 26 3
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(14)
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Obviously, ifd > 1, i.e.5 < 3% < 1, dissipation dominates over dispersion and, as pointed
out in the Introduction, then only jumps satisfying the Oleinik criterion (5) canuo(classical
shocks). However, in the more general casé ef O(1), the limit to small dissipation and
dispersion has to be be carried out by lettihand? tend to zero with the parameter= o(1)

kept fixed. As before, in this limg tends to zero almost everywhere and, in original variables,
the shock layer collapses into a jump discontinuity.

Figure 2: Typical results
for B — B..: The shock
layer splits into two sub-
layers. Inside the firstG
decreases fronl to a value
—B.. < —1 and increases
to —1 inside the second sub-
layer to satisfy the boundary
condition for n — oo. Both
sublayers are separated by a
pronounced plateau region
where G = —-B, whose
length tends to infinity as
B — B.; k=5, d=0.5,
B, ~ 2.46251

A representative numerical solution to the shock layer problem (13) is gliotfeig. 2.
It clearly shows that shock layer solutions can be obtained for vd8uesB,, (d, k) > 1 only.
Interestingly, as in the case of the mKdVB equation (4) discussed in [6]X0jdthe solu-
tion for the critical valueB = B.,.(d, k) splits into two sublayers separated by a pronounced
plateau region wheré = — B,

The possibility that the shock layer problem (13) possesses a solutitmefarodified
boundary conditions

(G,H)—1 for n— —oc0, (G,H)— —B for n— oo, (15)

with the eigenvalué3 = B, (d, k), enables the calculation of a st&lé,, F'(U,)) after the
first shock layer which, in the original variabl&sand X, corresponds to the right-hand state
of an admissible jump having a left-hand sté&tg, F(U)), see Fig. 3: Eql (14) shows that
for fixed values oft,, o and K, the shock strengtfU].. of a jump from(U,, F(U,)) to a
critical state(U, ., F'(Uq,¢r)) is implicitly given by the relation

(U] =[Uler: Ber (ﬁgﬁa ?;f) [U] +3[U] = =6 —6Uy, Be >1. (16)

This critical state has the distinguishing property that its Rayleigh line, i.e. tivel donnect-
ing states before and after jumps, is at the same time a Rayleigh line connectsigttdte
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Figure 3. Rayleigh lines of classical and non-classical shocks
for U, > U,: If U, is continuously reduced one eventually
reaches the limiting case of a classical non-sonic shock with
U, = Uy r. For the same staté/, it is, however, possible
also to construct a non-classical shock with right-hand state
U, determined by Eq! (17). Similar considerations can be
performed for jumps having, < U,. For e.g.U, = 2.1865,

K = 2.5520, o = 0.3572, Egs. [(16) and (17) lead to a solu-
tion [Ul]e = —3.5, Uy er = —1.3135, B, = 2.46251 (as in

Fig. 2) andU4 = —3.8729.

(Up, F(Up)) and (Ua, F(Ua)). In accordance to that, solving Eq. (12) for= Uy, with
G = —B., and[U] = [U], leads to

Ua = —2Up — 3 — [Uler. (17)

A shock from(Uy, F(Uy)) to (Ua, F(Ua)) is stronger than a classical sonic shock
with Vi = V.4, which would correspond to a valuB,,(d, k) =1, i.e. Ve = Viya. Fur-
thermore, as shown in Fig. 3, the wave and shock speeds satisfy thangrdsationship
Vp > Vs < Viua. Obviously, such a shock violates the Oleinik admissibility criterion (5),
although it is clearly admissible owing to the existence of a shock layer solution.

Asymptotic results

If k> 1,ie K~ K> 1and, sincey ~ 4 < 1, necessarily als€ > 1, the shock layer
problem (13) can be solved analytically by linearization at the poirt oo. This yields the
expansion
1v2
B (d, k) =3 —V2d + k;\lf()d (24 —12v2d + d2) + O(k™2). (18)

Here, the leading order term coincides with the solution for the mKdVB equé)agiven in
[6] and [10].

In contrast to that, for the case of dispersion dominating over dissipation, «e1l
and, therefore3> < 4 < 1, the asymptotic expansion with respectiteesults in

@ V2 — Vo(k —8)3+ v3)(1 +v3) arsinh <2>
16 18VE +4(2 + V3) vk

(k—32) . 2
— marsm (2\/2)

It should be noted that this expression is valid for 8 only. If d < 1 andk < 8, no shock
layer solution withG = — B, for n — oo exists.

Be(d,k)=3—d

+ O(d?). (19)
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CONCLUSIONS

For values ol ~ § = O(1) or smaller, the region for admissible classical shocks is smaller
than the region of admissibility following from the standard theory of nonlivesares, re-
flecting the fact that shock layer solutions can be obtained for valiesB.,(d, k) > 1
only. In this sense, the admissibility criterion derived from the existence dissipative-
dispersive shock structure is more restrictive than the Oleinik critericaddiition, however,
there exists a family of admissible non-classical shocks. Discontinuities ofatiés type
represent isolated solutions of the shock layer problem, that is to sagfiawaus transition
of a classical shock into a non-classical shock or vice versa is nstijp@sn general. As a
consequence, non-classical shocks may be generated in two wayBiostlyby imposing ap-
propriate boundary or initial conditions or, secondly, in an interior pojrguitably increasing
the strength of the sonic jumps, for example through the interaction with a &ave f
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