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Abstract
The coefficient of nonlinearityΓ = 1 + B/(2A) is of essential importance for the acoustic
wave propagation in single-phase gaseous media in thermodynamic equilibrium.In contrast
to the well-known perfect gases, which are characterized by values ofΓ > 1, real gases fea-
turing very large values of specific heats and commonly referred to as BZTfluids have the
distinguishing property thatΓ is found to become negative over a finite range of temperatures
and pressures. The existence of thermodynamic states withΓ < 0 in the dense gas regime
leads to the occurrence of phenomena which have no equivalent in idealgas dynamics. For
example, if the equilibrium state of the BZT fluid is chosen to be close to the transition line
Γ = 0, the propagation of planar nonlinear sound waves is governed by a Burgers equation
extended with a cubic nonlinearity term, which may result in the simultaneous generation of
compression and rarefaction shocks. The analysis presented here focuses on the properties of
acoustic waves transmitted through a BZT fluid contained in a rigid tube which is connected
to an array of Helmholtz resonators in its axial direction. Such a system gives rise to disper-
sion as well and, thus, the identification of physically acceptable discontinuous solutions in
the limit of vanishing dissipation and dispersion has to be approached by a special regular-
ization principle: In contrast to the classical, non-dispersive case where the admissibility of a
discontinuity is ensured by the existence of a viscosity dominated inner shockstructure, the
shocks are now generated as limits of diffusive-dispersive traveling waves. The thus obtained
shock admissibility criteria crucially depend on the precise ratio of dispersionto dissipation
in the system. This may lead to wave solutions violating the well-known Oleinik entropy cri-
terion since their discontinuities emanate rather than absorb waves. Such shocks are termed
”non-classical”.
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INTRODUCTION

It is well known that in many physical problems the evolution of nonlinear waves can be
described by the so-called Korteweg-de Vries-Burgers (KdVB) equation

∂u

∂t
+

∂f

∂x
= β

∂2u

∂x2
+ γ

∂3u

∂x3
, f(u) = Γ

u2

2
, β > 0, (1)

if a balance between nonlinearity, dissipation, and dispersion exists. However, if the nonlinear
effects characterized by the parameterΓ are dominant, i.e. in the the limitβ → 0 andγ → 0,
the evolution equation reduces to the inviscid Burgers equation, with its formalsolutions,
in general, featuring regions of multivaluedness that have to be removed by the insertion of
discontinuities according to the wave speed ordering principle

vwb > vs > vwa, vw =
df

du
, vs =

[f ]

[u]
. (2)

Herevw andvs denote, respectively, the wave speed and the shock speed, while the subscripts
b anda refer to states before (left of) and after (right of) the shock and[A] denotes the jump
of the quantityA, i.e. [A] = Aa − Ab. The relationship (2), which is now commonly referred
to as the Lax (entropy) criterion [7], in general is considered to be a necessary and suffi-
cient condition for admissible discontinuities such that they are stable and do not violate the
natural requirement that acceptable weak solutions must depend continuously on the initial
and boundary values. Each jump can thus be regarded as representinga dissipative-dispersive
profile whose streamwise extent is so small compared to the characteristic wavelength that it
collapses into a single point.

Furthermore, previous investigations dealing with nonlinear wave propagation involv-
ing dissipation and dispersion have also demonstrated that in some cases the quadratic flux
functionf(u) appearing in the KdVB equation (1) has to be extended with an additional cubic
term:

f(u) = Γ
u2

2
+ ǫΛ

u3

6
, ǫ ≪ 1. (3)

Examples include acoustic waves in fluid filled viscoelastic tubes [3], internalwaves in a two-
layer film flow [2], dust-acoustic waves in plasmas [8], and kinematic wavesin suspensions
of particles in fluids [6]. The appearance of the additional cubic term inf is a direct con-
sequence of the fact that in these problems the nonlinearity parameterΓ may change sign
depending on the particular conditions imposed on the unperturbed state. Obviously, the as-
ymptotic analysis which has led to Eq. (1) assumesΓ = O(1) and breaks down in the vicinity
of the transition point where the nonlinear parameter vanishes. Within a neighborhood where
Γ = O(ǫ), 0 < ǫ ≪ 1, small terms neglected so far become of the same order as the already
included quadratic correction term and a separate analysis is required. Introducing the new
(slow) time scaleT = ǫt and the parameterŝΓ = Γ/ǫ, β̂ = β/ǫ, andγ̂ = γ/ǫ then yields the
modified Korteweg-de Vries-Burgers (mKdVB) equation
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In the limit of small dissipative as well as dispersive effects, i.e.Γ̂ = O(1), Λ = O(1), β̂ ≪ 1,
and|γ̂| ≪ 1, Eq. (4) reduces to a scalar hyperbolic conservation law where the fluxf̂ is not
convex, i.e.f̂ ′′ changes sign. The problem is then said to be characterized by the presence of
mixed nonlinearity.

In [6] and [10] it has been shown that if the condition|γ̃| ≪ β̃2 ≪ 1 holds, the problem
of finding the appropriate shock admissibility criteria simplifies to the selection of atraveling
wave solution via the so-called vanishing viscosity approach. As pointed out in [4], such a
solution can be equivalently selected by using the Oleinik [9] entropy criterion, which for the
(non-convex) flux function̂f(u) from Eq. (3) reduces to

vwb ≥ vs ≥ vwa. (5)

In this limiting case, the jump criterion turns out to be equivalent to the Lax wave speed
ordering principle (2) in the generalized sense that for either the left-hand state or the right-
hand state of the shock the equality sign has to be included. Discontinuities withvs = vwa or
vs = vwb are calledsonic shocksand represent the jumps of maximum possible strength, if
the state before or, respectively, the state after is fixed.

In the general case where (small) dissipation is balanced by (small) dispersion, how-
ever, this concept fails and the insertion of discontinuities in order to obtain physically ac-
ceptable weak solutions has to be approached in the following way, see [6], [10]: The key
idea is to construct a traveling wave solution based on a dissipative-dispersive regularization
which gives the jump conditions in the limit of small dissipation and dispersion. Despite the
plausibility of the geometric inequalities of Eq. (5), shocks may exist that emanate rather than
absorb waves and, thus, violate the Oleinik criterion. Such shocks are termed ”non-classical”.

The consequence of the above discussion is that the possibility ofΓ < 0 in combination
with weak dispersive effects obviously provides new physical phenomena in gas dynamics
and acoustics and, thus, is also of great importance for the case considered here, namely, the
acoustic waves transmitted through a circular tube which isa) filled with a gas having an
acoustic nonlinearity parameterΓ = 1 + B/(2A) that can change sign andb) whose wall is
lined with an array of Helmholtz resonators, see Fig. 1.

PROBLEM FORMULATION

The propagation of nonlinear acoustic waves in a duct with an array of Helmholtz resonators
has been extensively investigated in the past by Sugimoto and co-workers, see e.g. [11], [12].
According to [11], the system of equations governing the sound wave evolution for the open
tube case shown in Fig. 1 can be written as:

∂u

∂x
+

∂f

∂φ
= −δR

∂1/2u

∂φ1/2
+ β

∂2u

∂φ2
− K

∂q

∂φ
, f(u) = Γ

u2

2
, 0 < β ≪ δR ≪ 1,

∂2q

∂φ2
+ δr

∂3/2q

∂φ3/2
+ Ωq = Ωu, 0 < δr ≪ 1, K > 0, Ω > 0. (6)

Here, the quantitiesu andq are proportional to the pressuresp andpc in the tube and the
cavities, respectively, whileδR andδr measure the ratios of the boundary layer thickness to
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Figure 1: Illustration of an open tube
with Helmholtz resonators.

the radius of the tunnel and that of the throat. In addition, the coupling parameterK and
the tuning parameterΩ control the dispersive effects of the array of resonators, and the term
proportional toβ describes the diffusivity of sound on the core region. Furthermore,φ and
x denote the retarded time measured in a frame moving with the linear sound speed and the
far-field space variable, respectively.

For perfect gases with constant specific heats,Γ = (κ + 1)/2 > 1, whereκ represents
the ratio of the specific heats, and the fluid motion is said to exhibit positive nonlinearity.
In this case, onlycompression shockscan form and propagate in the gas. The possibility
that alsorarefaction shockscan form in real fluids, i.e. thatΓ might become negative, seems
to have been recognized first by Bethe [1] and independently by Zel’dovich [14]. A class
of fluids involving gases with high specific heats can be identified for which the curvature
of the isentropes in the pressure-density state space is reversed near the coexistence curve
in the vicinity of the critical point and, consequently,Γ changes sign. More sophisticated
studies based on the Martin-Hou equation of state are due to Thompson and co-workers,
see e.g. [13], who gave specific examples of such fluids, which include hydrocarbons and
fluorocarbons of moderate complexity. In recognition of these investigations, fluids having
the distinguishing property that the fundamental derivative can change sign are commonly
referred to as BZT fluids. Furthermore, Kluwick [5] demonstrated that if the equilibrium state
of the BZT fluid is chosen to be in the neighborhood to the transition line whereΓ = 0, and
thusΓ = O(ǫ), 0 < ǫ ≪ 1, the propagation of planar, weakly nonlinear acoustic waves in
rigid tubes is governed by a modified Burgers equation wheref(u) has to be extended with
an additional cubic nonlinearity term. As a consequence,f(u) in Eq. (6) has to be replaced
with ǫf̂(u), with f̂(u) given by Eq. (4).

Introducing the new scales and parameters

X = φ − xK, T = ǫx, β̂ =
β

ǫ
, γ̂ =

K

Ωǫ
, K̂ =

K

ǫ
, δ̂R =

δR

ǫ
(7)

and assuming that the viscousandthe dispersive effects are small, the system (6) can be recast
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into (c.f. Eq. (4))
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6
,

q = u − γ̂
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(

∂2q

∂X2
+ δr

∂3/2q

∂X3/2

)

, β̂ ≪ δ̂R ≪ 1, γ̂ ≪ 1. (8)

In analyzing the shock admissibility conditions of the wave solutions traveling in the
system (8), we shall concentrate on the case where the inner shock structures are governed by
the diffusivity in the core region and the dispersion due to the array of resonators. Inspection of
Eqs. (8) then shows that within the spatial ranges∆X = O(β̂) and∆X = O(γ̂1/2) consumed
by the inner shock profiles the boundary layer effects are negligibly small.In the following,
therefore, the terms proportional tôδR andδr will be omitted.

SHOCK ADMISSIBILTY

For convenience the parametersΓ̂ andΛ appearing in Eqs. (8) are eliminated by introducing
the suitably scaled quantities

U =
Λ

Γ̂
u, Q =

Λ

Γ̂
q, X̃ =

Λ

Γ̂2
X, β̃ =

Λ2

Γ̂4
β̂, γ̃ =

Λ3

Γ̂6
γ̂, K̃ =

Λ

Γ̂2
K̂. (9)

Neglecting boundary layer effects, the system (8) then assumes the following form:

∂U

∂T
+

∂F

∂X̃
= β̃

∂2U

∂X̃2
+ γ̃

∂3Q

∂X̃3
, F (U) =

U2

2
+

U3

6
,

Q = U − γ̃

K̃

∂2Q

∂X̃2
, β̃ ≪ 1, γ̃ ≪ 1. (10)

In order to decide which jump discontinuities are admissible for weak solutions of
Eqs. (10) in the limit̃γ ∼ β̃2 ≪ 1, we study traveling wave solutions of the form

U = U(ξ), Q = Q(ξ), ξ = X̃ − VsT,

(U, Q) → Ub for ξ → −∞, (U, Q) → Ua for ξ → ∞. (11)

By using the scaled quantities

G =
2

[U ]

(

Ub + Ua

2
− U

)

, H =
2

[U ]

(

Ub + Ua

2
− Q

)

, η =

√
6|[U ]|

12
√

γ̃
ξ (12)

in place ofU , Q andξ, the shock structure problem reads

(G2−1)(B+G) = dG′+H ′′, H = G− 1

k
H ′′, (G, H) → ±1 for η → ∓∞, (13)

where ” ′ “ denotes differentiation with respect toη and

B = − 6

[U ]

(

1 +
Ub + Ua

2

)

, k =
24K̃

[U ]2
, d =

2
√

6

|[U ]|σ, with σ =
β̃√
γ̃

. (14)
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Obviously, ifd ≫ 1, i.e. γ̃ ≪ β̃2 ≪ 1, dissipation dominates over dispersion and, as pointed
out in the Introduction, then only jumps satisfying the Oleinik criterion (5) can occur (classical
shocks). However, in the more general case ofd = O(1), the limit to small dissipation and
dispersion has to be be carried out by lettingβ̃ andγ̃ tend to zero with the parameterσ = O(1)

kept fixed. As before, in this limitξ tends to zero almost everywhere and, in original variables,
the shock layer collapses into a jump discontinuity.
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Figure 2: Typical results
for B → Bcr: The shock
layer splits into two sub-
layers. Inside the firstG
decreases from1 to a value
−Bcr < −1 and increases
to −1 inside the second sub-
layer to satisfy the boundary
condition for η → ∞. Both
sublayers are separated by a
pronounced plateau region
where G = −Bcr whose
length tends to infinity as
B → Bcr; k = 5, d = 0.5,
Bcr ≈ 2.46251

A representative numerical solution to the shock layer problem (13) is plotted in Fig. 2.
It clearly shows that shock layer solutions can be obtained for valuesB ≥ Bcr(d, k) > 1 only.
Interestingly, as in the case of the mKdVB equation (4) discussed in [6] and[10], the solu-
tion for the critical valueB = Bcr(d, k) splits into two sublayers separated by a pronounced
plateau region whereG = −Bcr.

The possibility that the shock layer problem (13) possesses a solution forthe modified
boundary conditions

(G, H) → 1 for η → −∞, (G, H) → −B for η → ∞, (15)

with the eigenvalueB = Bcr(d, k), enables the calculation of a state(UA, F (UA)) after the
first shock layer which, in the original variablesT andX̃, corresponds to the right-hand state
of an admissible jump having a left-hand state(Ub, F (Ub)), see Fig. 3: Eq. (14) shows that
for fixed values ofUb, σ andK̃, the shock strength[U ]cr of a jump from(Ub, F (Ub)) to a
critical state(Ua,cr, F (Ua,cr)) is implicitly given by the relation

[U ] = [U ]cr : Bcr

(

2
√

6

|[U ]|σ,
24K̃

[U ]2

)

[U ] + 3[U ] = −6 − 6Ub, Bcr > 1. (16)

This critical state has the distinguishing property that its Rayleigh line, i.e. the chord connect-
ing states before and after jumps, is at the same time a Rayleigh line connecting thestates
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Figure 3: Rayleigh lines of classical and non-classical shocks
for Ub > Ua: If Ua is continuously reduced one eventually
reaches the limiting case of a classical non-sonic shock with
Ua = Ua,cr. For the same stateUb it is, however, possible
also to construct a non-classical shock with right-hand state
UA determined by Eq. (17). Similar considerations can be
performed for jumps havingUb < Ua. For e.g.Ub = 2.1865,
K̃ = 2.5520, σ = 0.3572, Eqs. (16) and (17) lead to a solu-
tion [U ]cr = −3.5, Ua,cr = −1.3135, Bcr = 2.46251 (as in
Fig. 2) andUA = −3.8729.

(Ub, F (Ub)) and (UA, F (UA)). In accordance to that, solving Eq. (12) forU = UA, with
G = −Bcr and[U ] = [U ]cr, leads to

UA = −2Ub − 3 − [U ]cr. (17)

A shock from(Ub, F (Ub)) to (UA, F (UA)) is stronger than a classical sonic shock
with Vs = Vwa, which would correspond to a valueBcr(d, k) = 1, i.e. Vwa = VwA. Fur-
thermore, as shown in Fig. 3, the wave and shock speeds satisfy the ordering relationship
Vwb > Vs < VwA. Obviously, such a shock violates the Oleinik admissibility criterion (5),
although it is clearly admissible owing to the existence of a shock layer solution.

Asymptotic results

If k ≫ 1, i.e. K̃ ∼ K̂ ≫ 1 and, sincẽγ ∼ γ̂ ≪ 1, necessarily alsoΩ ≫ 1, the shock layer
problem (13) can be solved analytically by linearization at the pointk → ∞. This yields the
expansion

Bcr(d, k) = 3 −
√

2d +
1

k

√
2d

10

(

24 − 12
√

2d + d2

)

+ O(k−2). (18)

Here, the leading order term coincides with the solution for the mKdVB equation(4) given in
[6] and [10].

In contrast to that, for the case of dispersion dominating over dissipation, i.e. d ≪ 1

and, therefore,̃β2 ≪ γ̃ ≪ 1, the asymptotic expansion with respect tod results in

Bcr(d, k) = 3 − d

√
k
√

k − 8

16

[

√
2 −

√
6(k − 8)(3 +

√
3)(1 +

√
3)

18
√

k + 4(2 +
√

3)
arsinh

(

2√
k

)

− (k − 32)

6
√

k − 8
arsin

(

2

√

2

k

)]

+ O(d2). (19)

It should be noted that this expression is valid fork ≥ 8 only. If d ≪ 1 andk < 8, no shock
layer solution withG = −Bcr for η → ∞ exists.
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CONCLUSIONS

For values ofd ∼ δ = O(1) or smaller, the region for admissible classical shocks is smaller
than the region of admissibility following from the standard theory of nonlinearwaves, re-
flecting the fact that shock layer solutions can be obtained for valuesB ≥ Bcr(d, k) > 1

only. In this sense, the admissibility criterion derived from the existence of adissipative-
dispersive shock structure is more restrictive than the Oleinik criterion. Inaddition, however,
there exists a family of admissible non-classical shocks. Discontinuities of thislatter type
represent isolated solutions of the shock layer problem, that is to say, a continuous transition
of a classical shock into a non-classical shock or vice versa is not possible in general. As a
consequence, non-classical shocks may be generated in two ways only: First, by imposing ap-
propriate boundary or initial conditions or, secondly, in an interior point by suitably increasing
the strength of the sonic jumps, for example through the interaction with a wave fan.
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