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Abstract 
Analytical solutions based on Flügge and Mindlin approximations of a thin elastic orthotropic 
plate under transverse impulse loading are discussed in the paper. The loading is supposed to 
be given as an arbitrary function of space and time. The results in the form of displacements 
and velocities are compared with those obtained by 3D finite element solution. Dispersion 
behaviour of the Mindlin approximation of a thin elastic orthotropic plate is studied as well.  
It was found out that there are allways three different dispersion curves for any arbitrary 
direction of propagation.  

INTRODUCTION 

Thin-walled structures can be modelled and simulated with the help of the three-
dimensional continuum mechanics. In this case the analytical and numerical effort is 
high, and the accuracy of the results is in some cases not adequate to the increase of 
the hard work. This and other difficulties are the reason for developing various 
approximative theories for plates and other thin-walled structural elements during the 
last 200 years. The paper is devoted to the fundamentals and some improvements of 
the classical plate theory proposed by Kirchhoff. It is known that any plate theory is 
an approximation of the three-dimensional theory and the approximations are always 
connected with some loss of information. Therefore the results obtained in this paper 
via approximative theories have been compared with those obtained by 3D finite 
element solution. In this research four analytical models were used for the description 
of thin plate behaviour. In the first of them (known as Kirchhoff model) the plate is 
assumed to be under a state of pure bending in which plane sections of the plate 
remain plane and perpendicular to the midplane of the plate. Thus, shear deformation 
is not included in this model. A state of plane stress is also supposed and the effects 
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of rotatory inertia are neglected. In the second model (known as Rayleigh model) the 
effects of rotatory inertia are also included without any shear deformation. Third 
model (known as Flügge model) incorporates shear deformations but no rotatory 
inertia effects. Fourth model (known as Mindlin model) takes into account (against 
Kirchhoff model) both rotatory inertia effects and shear deformations. 
 
 

PROBLEM  FORMULATION 
 
The scheme of the problem solved is illustrated in Fig.1. The transverse pressure 
loading p(x,y,t), with the resulting force F0 , is distributed over a small circle having 
2c diameter and center (xF , yF). This loading is applied to the upper face of a thin 
elastic bounded  plate a x b x h , where h is the thickness. The lower plate face is 
traction-free. 
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Figure 1  -   Model under study  
 
The time and space dependence of the loading may be given by an arbitrary function. 
The plate material is supposed to be linear elastic, homogeneous and orthotropic. 
Principal material and body axes coincide. At the beginning the plate is at rest (zero 
initial conditions) and without any stress. Displacements in the directions of axes x, y, 
z are denoted by  u, v, w  respectively. Material density is given by ρ.  
 
 

THEORY 
 

For the sake of brevity we will concentrate here on Flügge and Mindlin models only. 
The results obtained by Kirchhoff and also Rayleigh approximations are at the 
disposal as well and will be presented at the oral presentation. 
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Kinematics, plate stress-displacement relations and equations of motion for 
Flügge  and  Mindlin  models 
 
The total slope of any element of the plate consists of a rotation due to pure bending 
and a rotation due to shear strain γ (at z = 0) and so we have for small deflections 
w(x,y,t), bending slopes ϕx(x,y,t) , ϕy(x,y,t) and shear strain γxz , γyz 
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Denoting  ( and similarly ) the ratio of average shear stress xk yk xzτ  ( yzτ ) to the 
max( xzτ ) (max( yzτ )) across the plate thickness ( xzτ  and yzτ  are distributed 
parabolically here), we can write the equations of motion for the both models. So we 
obtain for the Flügge model the following system 
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For the Mindlin model  the system of equations of motion has the form 
 

2 2 2

2 2 2

( , , ) ,yz y yz y yxz x xz x xG k G kG k G kw w w p x
t x y x y

y t
h

ϕϕ
ρ ρ ρ ρ ρ

∂∂∂ ∂ ∂
− − + + =

∂ ∂ ∂ ∂ ∂
 

2 2 22

2 2 3 3 2 3 2 2

12 12( ) 12 12 12
0,y yz y xy xy y xy y y y yz yx

y

G k D D D D G kw
t h y h x y h x h y h
ϕ µ ϕ ϕϕ ϕ

ρ ρ ρ ρ ρ
∂ + ∂ ∂∂∂

− − − − +
∂ ∂ ∂ ∂ ∂ ∂

=

22 2 2

2 2 3 3 2 3 2 2

12( ) 1212 12 12 0.xy yx x y xyx xz x x x x xz x
x

D D DG k D G kw
t h x h x y h y h x h

µ ϕϕ ϕ ϕ
ρ ρ ρ ρ ρ

+ ∂∂ ∂∂
− − − − +

∂ ∂ ∂ ∂ ∂ ∂
ϕ∂

=

(4) 



J. Cerv, F. Vales and J. Volek 

For    in (3) and (4)  we have , ,x y xD D D y
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Shear stresses τxz ,  τyz    for all the considered models  have the parabolical 
dependence on the coordinate z. 
 
 

SOLUTION  
 

As an example we outline the solution of rectangular Mindlin plate having simply 
supported edges, see Fig.1. In this case we may assume the solution of the system (4) 
in the form 
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where m
m
a
πα = , n

n
b
πβ = . The functions W  and FX, FY  represent time 

dependences of displacement w and slopes ϕx , ϕy  respectively. Substituting from (6) 
into Eqs. (4) we obtain, after some lengthy manipulations, the following set of 
equations for W , FX, FY   
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For a1,a2,a3,........... a9   in  set (7),  it holds  
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Applying the Laplace transform to system (7) and considering the zero initial 
conditions, we  obtain the set of three equations for transformed functions 

( ), ( ), ( )W s FX s FY s , where s is the Laplace transform parameter. The solution 
particular images  ( ), ( ), ( )FX s FY sW s  and then the Laplace inversion leads to 
following relations for looked-for functions W, FX, FY. So we have 
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where Wj , Xj and Yj  are somewhat complicated function obtained in the course of the 
solution by Laplace transform and ωj are roots of some bicubical equation. For 
brevity, their forms are not shown here. Substituting (10) into (6) gives the resulting 
expressions for w, ϕx , ϕy . For the specified load shown in Fig.1, having Heaviside 
(step) time dependence, the results may be written in the form  
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where ( )2 2
mn m nγ α β= +  and  J1 is the Bessel function of the first kind of order 1. 
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RESULTS 
 

In all the analytic results shown here it is supposed that a square plate is made of 
orthotropic material of thickness h=0.5 mm, a = b = 60 mm. All analytic calculations 
were performed for m = n = 1000 normal modes, see Eqs.11. FE modelling of a wave 
motion in a plate was carried out by using the finite element code MARC 2005. A 
square plate 200 x 200 x 0.5 mm was divided across the thickness into three same 
layers. Due to symmetry only a quarter of the plate has been modelled. So the 
sandwich plate 100 x 100 x 0.5 mm  was discretized by a grid of 121338 eight node 
brick elements. In the vicinity of the load the mesh was locally refined. The lumped 
mass matrix and the central difference scheme for the time integration were employed 
because errors in the temporal and spatial approximations tend to cancel each other. 
For FE calculations, the stability time step used was  0.004µs.  
A unidirectional material (Glass-epoxy) of the plate was assumed to be transversely 
isotropic (nine nonzero elastic stiffness moduli, five of which are independent), x axis 
was along the fibres, y axis was normal to the fibres and z axis was perpendicular to 
the plane of the plate, see Fig.1. The pressure with the resulting force F0 = 1N  was 
distributed  in the middle of the plate over the circular area of diameter 2c = 0.5 mm 
and has the Heaviside step time dependence. The mass density ρ =1800 kg/m3. We 
introduce new variables ξ and η as distances from the load axis in the directions of x 
and y axes respectively. So we have ξ = x - xF , η = y - yF   and  now we can compare 
the analytic results with those obtained by FE approach.  
Elastic stiffness moduli are:    Ex = 38.6 GPa,  Ey =  Ez = 8.27 GPa,  Gyz = 3.45 GPa,  
Gxz =  Gxy = 4.14 GPa, µyz = µxy = 0.2, µxz = 0.043. 

 
Fig.2    Transverse velocity time histories resulting from FEM (3D) and Mindlin models 
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In Fig.2, the transverse velocity time histories from both approaches at propagation 
distance ξ =0 , η = 6 mm are shown.  FE values from top and bottom plate faces  
were averaged. It is seen that agreement between the two methods is quite good. It is 
the opinion of the authors, that some discrepancy between the two methods is given 
by approximative nature of Mindlin model. The Mindlin model cannot handle wave 
reflections from top and bottom plate faces. 
 
Dispersion behaviour of Mindlin model 
 
Let us consider an orthotropic plate, having thickness h as in Fig.1, but now of 
infinite extent in the x and y directions. We assume the following forms for 
deflections w(x,y,t) and  bending slopes ϕx(x,y,t) , ϕy(x,y,t) 
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where W0 , Φx , Φy  are the amplitudes, k is the wavenumber, c is the phase velocity 
and cosα , sinα are the x,y components of the unit wave vector respectively. Θx and 
Θy are the corresponding phase angles. 
 

 
Fig.3    Dispersion curves for Mindlin model (α = π / 4)) 
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Substituting (12) into homogeneous (loading  p(x,y,t) = 0 ) equations of motion (4) 
we get after some algebra Θx = Θy =π /2 and also the homogeneous set for W0 , Φx , 
Φy . For nontrivial solution, we obtain the characteristic bicubic  equation for the 

dimensionless velocity / xEc
ρ

. Numerical solutions of the characteristic equation 

yield for every direction of propagation three dispersion curves. The curves describe 
the dependence of the dimensionless velocity  on dimensionless wavenumber kh. The 
Fig.3 illustrates the dispersion curves for the direction of propagation α =π / 4. The 
plate is made of Carbon-epoxy with the following material constants: Ex = 142.2 
GPa,  Ey =  Ez = 9.255 GPa,  Gyz = 3.114 GPa, Gxz =  Gxy = 4.795 GPa, µxz = µxy = 
0.334, µyz = 0.486, ρ = 1900 kg/m3 . 
 
 

SUMMARY 
 
The solutions based on Flügge and Mindlin approximations of a thin elastic 
orthotropic plate under transverse impulse loading are discussed in the paper. The 
results in the form of displacements and velocities are compared with those obtained 
by 3D finite element solution. Dispersion behaviour of the Mindlin approximation is 
studied as well.  It was found out that there are allways three different dispersion 
curves for any arbitrary direction of propagation. The influence of the shear 
correction factors , on the dispersion was investigated by the authors and many 
others [1]. Dispersion curves were found to be fairly insensitive to the above factors. 
Effects of viscoelasticity on thin plate behaviour were investigated in [2]. 
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