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Abstract 
Pressure wave interactions with combustion has been a subject of a rich pedigree, beginning 
with Lord Rayleigh’s work in the nineteenth century and the known relevance of these effects 
in gas turbines and combustors where catastrophic failures can occur due to resonance. In this 
paper some of the fundamental length and time scales in pressure wave interactions with 
premixed flames are discussed. These basic relationships are fundamental in understanding 
the essentials of pressure wave interactions with combustion. There are four main types of 
interactions - long wavelength disturbances where the flame is essentially passive to the 
pressure wave oscillations. Such frequencies would typically be in the 1 – 10 Hz range. Very 
long wavelength type disturbances (typically 0.1 – 1 Hz) would be a special case where the 
flame is a contact discontinuity. The very common type of interactions are for higher 
frequency (hundreds of Hz ) pressure oscillations and in this case, though the flame 
movement is still essentially passive to the pressure changes, there can be changes in the 
energy fluctuations at the flame which then cause Rayleigh's criterion to be obeyed and 
energy to be added to the acoustic disturbance leading to resonance. For even higher 
frequencies still (the last region of interactions – KHz to MHz), the pressure wave 
disturbances can at this level severely disturb the premixed flame since the pressure 
disturbance length scale is on a par with the flame thickness, and the interactions can then 
such as to single out a chemically derived resonant high frequency. Some systems are 
considered where these basic principles are applied, and theoretical transfer functions for 
predicting the resonance characteristics for combustion devices are discussed. 

INTRODUCTION 

For a pressure wave interacting with a premixed flame (figure 1), analysis has 
identified key length and time ratios in flame–pressure interactions [1-4], defined as 
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follows: 
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and which characterize each type of interaction. By defining the Mach number of 
flame propagation, i.e. 
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(where 0u′  is the initial burning velocity and 0a′  the sound speed), it follows that 
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If the flame is characterized by one overall Arrhenius reaction with a non-
dimensional activation energy defined as 
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(where A'E′  is the dimensional energy, 'R′  is the universal gas constant and bT ′  is the 

steady burnt temperature), then the characteristic length-scale of the pressure 
disturbances determines four distinct cases of pressure–premixed flame interaction. 

(i) .1:1 <<>> τMN  Large length-scale disturbances. Pressure gradients not 
important throughout the combustion region (including inner reaction zone and outer 
combustion zones—preheat and equilibrium). The effect of the pressure disturbances 

Figure 1 – Typical length- and time-scales for pressure interactions with 
premixed combustion fronts. 
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are felt only in the outer Eulerian (hydrodynamic) zones, where conservation of 
momentum and energy implies the acoustic equations for small-amplitude 
disturbances. For high-speed subsonic fronts, jump conditions emerge from Rankine–
Hugoniot jump conditions across the whole combustion region. 
(ii) .1:1 == τMN  Pressure gradients not important in the combustion region; inner 
reaction zone not affected by pressure field. The effect of the pressure disturbances is 
predominantly in the outer combustion zones (preheat and equilibrium), where the 
equations and jump conditions govern the connection between the mass flux and 
pressure transients. 
(iii) .:1 22 θτθ == MN  Pressure gradients still not felt in the combustion region; 
however, fast time-scale now causes the pressure changes to affect the inner reaction 
zone. A different equation to that in (i) above now determines the connection between 
the mass flux and the pressure changes. 
(iv) .1:1 MN == τ  Pressure gradients now important in the combustion region, 
which experiences the full effect of any pressure wave passing through. Non-constant 
wave speed with nonlinearities for large-amplitude disturbances; the pressure changes 
are of an ultra-short length-scale. 

 
The schematic (figure 2) shows the different order of magnitude of mass flux 

response, according to the ratio τ  (which is equal to NM1 ). This diagram pertains to 
low-speed flames and small-amplitude disturbances. On the left of the diagram, the 
flame can be regarded as a contact discontinuity where the whole combustion region 
is swept along with the fluid disturbance. On the right of the diagram, the pressure 
disturbance is of an ultra-short length-scale such that the pressure gradient is ‘felt’ 
within the combustion region. For sharp pressure increases, the (forward) inflection 

Relative response of mass flux 

 
Figure 2 – Schematic of mass flux response ((m0 − 1)/[(1 − γ −1)(p0 − 1)]) to small-amplitude 

disturbances for different time- and length-scales. 
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point responds at a faster rate than the reaction peak point, thus ‘thinning’ the flame, 
which will have an overall increase in burning velocity before eventually settling 
down to a new steady-state structure.  

FREE FLAME RESONANCE 

For small-amplitude disturbances (where the amplitude ε is O(θ -1)), and the 
initial combustion wave is a low-speed flame (with only negligible pressure changes 
across the deflagration), then the most instructive case is case (ii) in the above list. 
When a premixed flame is near an oscillatory pressure field, it can be shown [2] that 
there is an important coupling between the strength of the pressure disturbance 0up  

and the fluctuating mass burning rate 0um  [1,5,6], given by 
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where 4
1+= ωr  and ω  is a non-dimensional complex frequency (thus 

ir iωωω +≡  where ωr is growth rate and ωi is the modal frequency), Q is the non-

dimensional heat release (typically Q ≈  0.8) and 
θ
 is the dimensionless activation 

energy (typically 
θ
 ≈  10). 

It should be noted that the result above for laminar flames can equally well be 
applied to the thick turbulent flame regime, where the structure is such that the 
reaction zone can be thought of as a thick turbulent brush. Using different 
lengthscales determined by viscous diffusion and heat transfer, the basic physics of 
the interactions described earlier for laminar flames—certainly as regards 
extinction—can be regarded as similar and thus used to predict the behaviour of thick 
turbulent flames in a changing pressure environment. For such an application to thick 
turbulent flames, a first approximation must be that the change in mass burning rate 
due to the small-scale increase in baroclinically generated vorticity within the flame 
will not be large. This is an acceptable assumption for case (ii) type interactions, since 
long-wavelength acoustics are considered and the pressure gradient is not ‘felt’ in the 
reaction zone. 

Equation (5) is for case (ii) ( )1:1 == τMN . Clearly, as ω  becomes large, 
then equation (5) implies 
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which, in figure 2, corresponds to the τθ2

1  part of that schematic. In [3] further 

investigations were undertaken for the case of very high frequency (that is, 
( )θω O~ ), and, as a result of the asymptotic analysis with this assumption (i.e. case 

(iii) ( )22 :1 θτθ == MN ), the ω  ‘tail’ of equation (6) can be shown not to carry 
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on to become larger and larger without limit for increasing frequency. Eventually, the 
response reaches a peak level, as shown in figure 3. 

For 
θ
 ≈  10 and Q = 0.8 (typical for hydrocarbon combustion), the response peak  
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at 22

max i 75.0 Qθω ≈ , so that there is, in fact, a high-frequency natural resonance (that 

is, apart from any organ pipe resonance  from equipment surrounding the flame). 
In dimensional terms, the resonant frequency is given by 
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This is for an overall one-step reaction, where 01u′  is the steady burning velocity 

and κ ′  is the thermal diffusivity. Thus a natural resonant high frequency (of the order 
of kHz) exists for most practical hydrocarbon flames and should be measurable 
experimentally, although this has not yet been confirmed. A pure tone generator 
directed at a laboratory premixed flame should then give resonance in the flame itself 
at a particular value of high frequency. Though there will be difficulties in measuring 
a pure harmonic at high frequency, and the theory here is based on single-step 
reaction kinetics, nevertheless it is surprising how well the single-step chemistry has 

 
Figure 3 – Variation of mass burning ratio M = mu0/[

θ 2Q(1 − γ −1)pu0] with 
frequency and activation energy for high-frequency oscillations, τ  ~ 

θ 2. 
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worked for flame stability analysis, so, at least qualitatively, equation (8) should yield 
a reasonable approximation to the acoustic resonant frequency for premixed flames. 
Using a thermal diffusivity for air κ ′  at 1000 K of 1.69×10−4 m2s−1 (see p. 839 of [7] 
for an estimate of thermal diffusion coefficient at high temperature), a typical burning 
velocity 0u′  of 0.2 ms−1, with bA TRE ′′′≡θ  = 10, yields a typical resonant frequency 

prediction for premixed hydrocarbon combustion to be ca. 2.8 kHz. 
If non-harmonic disturbances are allowed, then if the length-scale is small 

enough ( ( )1~ −MOτ ), the pressure gradient becomes significant in the reaction zone, 
and there is severe distortion of this region, such that for a pressure drop, the flame 
broadens and slows down, and for a pressure rise, the reverse happens with the flame 
thinning and accelerating. Earlier investigations [4,8,9] show that sharp pressure 
changes can cause major changes in the flame structure—transient stretching or 
compression of the flame—and, consequently, the mass burning rate can alter 
substantially. 

SMALL AMPLITUDE HEAT TRANSFER RESONANCE 

In the earlier section ε  was O(θ −1). If the amplitude of the acoustic 
disturbances is now much smaller and ε  becomes of O(M) with τ still O(1), then a 
different set of acoustic balances emerges [10], such that a very small acoustic field 
involves a velocity fluctuation which now is at the same magnitude as the combustion 
generated flow velocities near the flame. These velocities are, through the gas law 
and continuity relations, inseparably connected to parallel temperature disturbances 
through the flame and what then emerges is a transfer function V between such 

 
Figure 4 – Schematic of a typical Rijke burner.  
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velocity perturbations 1û  (cold) and 2û  (hot) given by:  
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As in the earlier case, ω represents the complex frequency, 

θ
 is the 

dimensionless activation energy, and here T0 is the ratio of unburnt to burnt 
temperature in the steady (burner-anchored flame) and x is the adiabaticity. It is given 
by  
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and is linked to the flame stand off distance. As the flame becomes less attached to 
the burner and the flame temperature Tb approaches the adiabatic flame temperature 
Tad, so the adiabaticity x increases.  

The impedance of the gauze holder of Rijke type burner systems (see figure 4) 
to the passage of pressure disturbances is small – the only appreciable effect is a 
phase shift, so that impedance term used in simulations of these burners is of the form 
iXg. Considerable success [11, 12] has been achieved through the use of the velocity 
transfer function (equation (10)) to predict the resonance behaviour of flames in such 
devices Rijke type burner systems. 

CONCLUDING REMARKS AND SIMPLE RULES FOR RESONANCE 

(1) A necessary (but not sufficient) condition for resonance of practical 
combustion systems with acoustic waves (usually governed by small amplitude heat 
transfer resonance) is that the time scale act ′  of acoustic waves travelling in the outer 

chamber (typical length acl′ ) is of the same order as the time scale (combt ′ ) for the 

much slower diffusion disturbance to travel through typical distances (combl′ ) 

associated with combustion. With speed of sound 0a′ , the two times can be written as 
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where κ ′  is thermal diffusion. Consequently for the two time scales to be the same  
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is the necessary condition for resonance, where 0u′  can be regarded as the burning 

velocity of the steady flame.  
(2) The sufficient condition for resonance can only be found by solving the full 

system of the acoustic field coupled with the flame region. All important is a velocity 
transfer function (equation (10)) to describe the progress of the velocity fluctuations 
through the flame.  

(3) Free flames also show resonance behaviour but at higher typical frequencies 
where 2θτ =  (and MN 21 θ= ) which corresponds to the condition (equivalent to 
equation (13)) 
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In this case, the high frequency pressure disturbances cause the inner reaction 

zone to oscillate, and resonance to occur. An estimate (equation (8)) of the resonant 
frequency can be made.  
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