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Abstract 
A study of the axisymmetric vibration modes of a short cylinder is presented. The 
Ritz method is applied to calculate the non-dimensional frequency and its dependence 
on both the slenderness L/D and Poisson’s ratio. The plot of the non-dimensional 
frequency versus L/D is analysed to determine the frequency crossings and the mode 
shapes. In the case of Poisson’s ratio equal to zero, it is verified that there are multiple 
frequencies for the antisymmetric modes and that the mode shapes below and above 
the first crossing are interchanged.  The natural frequencies and the mode shapes are 
accurately calculated for stainless-steel cylinders with a Poisson’s ratio of 0.298. It is 
found that although actually no frequency crossing occurs, the mode shapes below 
and above the false crossing are interchanged.  The theoretical results are 
experimentally verified by using a laser speckle interferometer as detector of 
vibration of two stainless-steel cylinders with L/D=1.2 and 1.5, respectively. Free 
vibration is induced by an impact and the out-of-plane component of the 
displacements is detected.  An analysis of the spectrum provides the natural 
frequencies. Forced vibration is then excited by adhering two piezoelectric 
transducers to the cylinder’s ends. The out-of-plane and in-plane displacement 
components are detected along one generatrix on the lateral surface. An excellent 
concordance between the theoretical and the experimental results is found.  

 
 

INTRODUCTION 
 
The theory of wave propagation and vibrations in rods based on the classical theory 
of elasticity is well established [1]. The free vibration solutions of the Pochhammer 
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equations for rods are exact. These solutions are applicable to circular cylinders with 
stress-free surface and infinite length; but traction-free ends are not permitted.  
Natural frequencies and normal modes of finite cylinders can be accurately 
determined by means of numerical methods. From Hamilton’s principle applied to a 
system whose displacements are harmonic in time, it is concluded that the difference 
between the maximum kinetic and potential energies is a minimum when the cylinder 
is vibrating in a normal mode.  A widely used methodology is the Ritz method, based 
on assuming approximate solutions, suitable for the system, which satisfied the 
boundary conditions. Convergence towards more accurate frequencies and mode 
shapes is obtained as the number of terms in the approximating expressions is 
increased. This methodology is applied by Leissa and So [3] to finite cylinders, the 
displacement functions are in the form of algebraic polynomials in the cylindrical 
coordinates.  

In the present work, the Ritz method is used to study axially symmetric 
vibration modes of finite length cylinders. Power series are assumed for the 
displacements. For axisymmetric displacements, the displacement functions only 
have radial u and axial w components; both functions of time t, the distance r to the 
revolution axis, and of the distance z to the plane perpendicular to the axis at the 
central point of the rod. Standing-wave solutions are sought of the form 
 

                                     (1) ( , )sin( ); ( , )sin( ).u U r z t w W r z tω ω= =

 
The amplitudes U and W  are assumed as polynomial functions, 
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with i=1,2,…I; j=0,1,2,...J; p=0,1,2,…P; q=0,1,2,...Q; where i=0 is not considered in 
order to avoid singularities in the stresses in r=0. In symmetric modes j only takes 
even values and q odd values, and in antisymmetric ones j takes odd values and q 
even values.  

Expressed the functional of the maximum potential energy and the maximum 
kinetic energy for a mode of the axisymmetric vibration, Hamilton’s principle obliges 
that   for all Amax max max max( )/ 0, ( )/ij pqV T A V T C∂ − ∂ = ∂ − ∂ = 0, ij and Cpq. 

These conditions constitute a homogenous set of linear algebraic equations in Aij and 
Cpq. The eigenvalues of this system are the square of the nondimensional frequencies 
and the eigenvectors are the coefficients of the polynomials. For economy of 
calculations the nondimensional frequency /fD Gπ ρΩ =  is used, where f=ω/2π is 
the ordinary frequency measured in Hz, D the diameter of the cylinder, and G the 
shear modulus. Shear modulus is related to Young’s modulus E and Poisson’s ratio ν 
by G=E/[2(1+ν)]. The frequencies Ω depend on Poisson’s ratio and the quotient of 
the length and diameter of the cylinder, i.e. the slenderness L/D.  Therefore, 
nondimensional natural frequencies can be expressed as 

 



ICSV13, July 2-6, 2006, Vienna, Austria 

                                                                                                (3) ( , / ).L DνΩ = Ω
 
In the elemental theory for longitudinal vibrations of slender rods, the plot of  Ω 

versus L/D, for a given Poisson’s ratio, is a set of equilateral hyperbolas. In such a 
plot, no crossing occurs, neither between symmetric modes nor between 
antisymmetric ones. On the other hand, for short cylinders the nondimensional 
frequency is a complicated function of both ν and L/D. The purpose of this work is to 
study, theoretically and experimentally, such a dependence and to analyse the 
frequency crossings and the mode shapes. The study can contribute to a better 
understanding of the complete frequency spectrum of a rod. 

 
FREQUENCY CROSSINGS IN THE PLOT OF Ω VERSUS 

SLENDERNESS 
 
The Ritz method is applied to determine the natural frequencies of axisymmetric 
vibrating cylinders whose lengths are of the same order as their diameters. The results 
of  Ω versus L/D for different Poisson’s ratios are plotted in order to determine the 
frequency crossings. Then, the mode shapes are obtained in the neighbourhood of the 
crossing points. 
 

 
Figure 1.  The  lowest nondimensional frequencies  in terms of slenderness for the  

antisymmetric vibration of short cylinders with ν=0. 
 
Firstly, the study is concerned with ideal materials with a Poisson’s ratio of 

zero. The  lowest axisymmetric nondimensional frequencies Ω for the symmetric and 
antisymmetric modes are calculated for values of L/D ranging from 0 to 3.  The 
values of Ω are arranged for each value of L/D according to the increasing value of 
the frequency.  The plot of  Ω versus L/D for the symmetric modes shows that there 
are several crossings points apart from the universal one. The latter is called universal 
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point [5] because first-symmetric-mode curves for materials with any Poisson’s ratio 
pass through it.  Let us analyse the results for the antisymmetric modes shown in 
Fig.1. For small values of the slenderness, the frequency of a cylinder with a constant 
diameter increases with L, as expected as the cylinder can be considered as a disc of 
thickness L. Whereas, for values of L/D ≥ 1.9, the curve for the lowest frequency is 
similar to an equilateral hyperbola of the form ΩL/D=constant, as in the elemental 
theory for slender rods. A detailed calculation shows that the two lowest curves 
intersect for L/D=1.844 and Ω=2.412, which is a multiple frequency since such a 
cylinder can vibrate in two different mode shapes with the same frequency. An 
analysis of the mode shapes in the surroundings of such a point confirms that the 
mode shapes below and above the crossing point are interchanged. There exist more 
crossing points for L/D≈1.0 and L/D≈1.7 for higher frequencies. Therefore, in the 
case of a Poisson’s ratio of zero, there are many multiple frequencies in the plot of Ω 
versus L/D. 

Secondly, the results presented refer to the first symmetric and antisymmetric 
modes. In the elemental theory for slender rods, there are crossings neither between 
the symmetric modes themselves, nor between the antisymmetric ones, nor between 
the symmetric and antisymmetric modes.  Since for short cylinders the dependence of 
Ω on L/D is complicated, multiple frequencies are expected to be found. An study is 
carried out for the first symmetric and first antisymmetric modes for stainless-steel 
cylinders with slendernesses ranging from 0.1 to 2.0 and with a Poisson’s ratio of 
0.298.  A multiple frequency is found for a slenderness L/D=0.786; which is 
experimentally verified in the laboratory. For this purpose, a steel cylinder, 31.35 mm 
in length and 39.90 mm in diameter, its slenderness being L/D=0.7857, is put under 
free vibration by applying an axial percussion. A laser interferometer is used to detect 
the out-of-plane component of the resulting vibration at the center of one end. The 
maximum amplitudes of the spectrum, obtained from the fast Fourier transform of the 
detected signal, correspond to the natural frequencies.  Fig.2 shows a detail of the 
spectrum obtained for the steel sample. There is an unique natural frequency of 67875 
Hz, which confirms the theoretical predictions.  

 

 
Figure 2. Detail of the spectrum for a steel cylinder with L/D=0.7857. 
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Finally, the frequency spectra for short cylinders with Poisson’s ratio other than 

zero are determined. Hutchisson [2] accurately determined the curves of Ω versus L/D 
trying a series solution of the general three-dimensional equations of linear elasticity. 
He concluded that there are no frequency crossing in any of the plots of the frequency 
in terms of the slenderness, and that no frequency crossing should occur when the 
plotting is done for even and odd modes separately. This statement seems to 
contradict the above results. In order to confirm Hutchison’s results, the spectra for 
stainless-steel cylinders are calculated. Fig.3 shows the plot of  Ω versus L/D for the 
lowest antisymmetric modes of steel cylinders with a Poisson’s ratio of 0.298. It 
appears that the two lowest modes intersects in the surroundings of L/D=1.3. This 
apparent crossing is analysed in detail by calculating numerically the nondimensional 
frequencies for values of slenderness close to 1.3.  It is found that for all the values of 
the slenderness there is a difference between the frequencies Ωa2-Ωa1, and, therefore, 
such apparent crossing does not occur.  

 

 
Figure 3.  Ω-L/D curves for the antisymmetric modes of steel cylinders with a 

Poisson’s ratio of 0.298.  
 

MODE SHAPES IN THE NEIGHBOURHOOD OF THE CROSSING. 
NUMERICAL RESULTS VERSUS EXPERIMENTAL ONES. 

 
The mode shapes for stainless-steel cylinders in the neighbourhood of the 

apparent crossing are also calculated by means of the Ritz method. The purpose is to 
determine the variation of the mode shapes as L/D increases. The mode shapes for the 
two lowest antisymmetric modes corresponding to cylinders with slendernesses from 
1.2 to 1.6 are analysed. It is found that as L/D increases, the mode shapes gradually 
change,  resulting in almost an interchange between the modes below and above the 
apparent crossing at L/D=1.3. Fig.4 shows the numerical results for the slendernesses 
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L/D=1.2 and 1.5, i.e. aspect ratios below and above the crossing. Note that there is 
some similarity between the mode shape for the first antisymmetric mode for L/D=1.2 
(Fig.4a1) and that for the second mode corresponding to L/D=1.5 (Fig.4b2). In the 
same way, the second mode for L/D=1.2 (Fig.4a2) bears a remarkable resemblance to 
the first mode for L/D=1.5 (Fig.4b1). 
 

 
  

    a2)               b2) 
 

    
    a1)               b1) 
 

Figure 4. a) Mode shapes for a cylinder with  L/D=1.2, figure  a1) corresponds to the first 
antisymmetric mode and figure a2) to the second one. b) The same as a) for the slenderness 

L/D=1.5 
  

The above numerical results are verified experimentally. The samples used are 
two stainless-steel cylinders with diameter D=49.00 mm and slendernesses L/D=1.2 
and 1.5, respectively, whose physical properties are: density ρ=7894 kg/m3, shear 
modulus G=77.32 GPa, and Poisson’s ratio ν=0.288. In a first experiment, the 
axisymmetric natural frequencies for both cylinders are determined. The procedure 
used to generate the vibration of the sample and the posterior detection has been 
described previously [4]. The cylinder is positioned horizontally and supported at its 
center on a small rubber block. A steel sphere is used to apply an axial impact to the 
center of one of its ends. Then, the cylinder is left to vibrate freely. An optical 
interferometer is used as detector of the vibration at the center of the opposite end. 
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The interferometer used can detect both the normal and tangential components of the 
displacement with a resolution of about 1 nm. The electronic demulation circuit 
produces an output proportional to the surface displacement component. In order to 
determine the natural frequencies the fast Fourier transform of the out-of-plane 
component is calculated. The analysis of the spectrum yields the lowest 
antisymmetric frequencies: f1=59075 Hz, f2=65175 Hz for L/D=1.2, and f1=56650Hz,  
f2=60200 Hz for L/D=1.5. 
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Figure 5. a)  The out-of-plane and in-plane displacements along a  generatrix of a 

cylinder with L/D=1.2. a1) For the first antisymmetric mode and a2) for the second one. b)  
The same as a) for a cylinder with L/D=1.5. The solid and dashed  lines represent the 

numerical  results and the squares and  triangles the experimental ones for the out-of- plane 
and in-plane components, respectively. 

 
In a second experiment, forced vibration is induced by adhering two small 

piezoelectric transducers to the cylinder’s ends. The resulting vibration is detected 
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along one generatrix of the cylinder. The out-of-plane and in-plane components are 
detected by the laser interferometer at points on such a generatrix, whereby both 
amplitude and phase are measured. A sinusoidal signal generator drives the 
transducers, the exciting frequency being near to the resonance for the mode to be 
excited. Therefore, the displacements can be easily detected since a large amplitude is 
expected. However, if the exciting frequencies are too close to the resonance, any 
parasitic variation of frequency causes sharp changes of amplitude and phase.  

The out-of-plane and in-plane components of the displacement for points on 
one generatrix of the cylinder with L/D=1.2 are represented in Fig.5a. The first 
antisymmetric mode corresponds to Fig.5a1, and the second one to Fig.5a2. The solid 
and dashed lines represent the numerical results shown in Fig.4 for the out-of-plane 
and in-plane components of the displacements along the generatrix. The squares and 
triangles indicate the amplitudes for the out-of-plane and in-plane components, 
respectively, measured with the interferometer. Fig.5b shows the results for the 
cylinder with slenderness L/D=1.5. Note that the experimental results are in complete 
agreement with the numerical ones. Fig.5a1 for the first antisymmetric mode for 
L/D=1.2 bears some resemblance to Fig.5b2 corresponding to the second mode for 
L/D=1.5. Similarly, Fig.5a2 resembles Fig.5b1. Therefore, it is found that although no 
crossing occurs, the mode shapes gradually tend to become similar resulting in almost 
an interchange of the mode shapes. 
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