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Abstract 

The certainty of risk estimation, being part of technical risk analysis, depends on 

numerous factors, including the uncertainty of external conditions, the uncertainty of 

the model, which is related to the relevant level of knowledge of degradation and 

fatigue-related processes, parametrical uncertainty and the quantitative evaluation of 

the effect of propagation of uncertainty in the system. Evaluation of the consequences 
and gravity of loss while relying on uncertain results makes no sense and thus the 

model should account for the uncertainty of analysis, and also additional information 

should be introduced to reduce the uncertainty. Use of vibroacoustic diagnosis 

methods, which enables detection of both qualitative and quantitative changes of 

mechanical properties and kinematic-and-dynamic parameters of critical elements and 

kinematic nodes, can substantially reduce the uncertainty of technical risk analysis. It 

should be stressed that the studies dealing with modeling while accounting for 
uncertainty stress that there is a major deficit of available means for dealing with this 

sphere when compared to actual requirements. 

While tackling the problem of the impact of diagnostic inspection results on 

reduction of uncertainty of risk estimation, one should above all review the possibility 

of applying the Proportional Hazards Model when describing the degradation and 

fatigue processes while also accounting for the impact of the covariates. 

INTRODUCTION 

The growing social aversion to incorrect decisions leads to emergence of 

understandable interest in research on and evaluation of uncertainty that accompanies 

subsequent stages of the construction process and that is associated with certain 

operational decisions. 

The sources of uncertainty should be sought in such areas as: the randomization 
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of loads and load capacity as the degradation process develops, the incomplete 

statistical information when estimating the parameters of a model, the adoption of 

simplified models of phenomena and processes, the procedures related to determining 

the variables which describe the processes of wear as well as degradation, the 

description of environmental impact, the modeling of operator’s errors and especially 

the process of determining the relations and the feedback in the man-environment-

technology system. In general one can say that uncertainty results from lack of 

sufficient knowledge about load capacity and actual loads to which technical systems 

are subjected. The basic problem is the relevant selection of variables so as to enable 

dimensioning of machines elements while accounting for the properties of materials 

and for the load as well as application of relevant methods of modeling and analysis 

of the process of emergence and development of defects. We propose using the 

information obtained from vibroacoustic diagnosis to determine the influence that 

respective stages of defect development have on the function of intensity of defects in 

examined elements or kinematic pairs. Use of Proportional Hazards Model will allow 

accounting for the results of the diagnostic experiment by extending the observation 

space to include the dimension of system variables. 

PROPORTIONAL HAZARDS MODEL 

The reliability function can be determined in two ways: as a function of probability 

density that accounts for the influence of degradation processes and operating 

conditions, or as a function of defect intensity that depends on the base function of 

defect intensity and on the systemic variables accounting for operating conditions. As 

regards the models that account for diagnostic research, the systemic variables will 

account for the influence that the additional information obtained during diagnostic 

inspection has on uncertainty of reliability evaluation. 

Thus, as presented in [5] the application of proportional models offers the 

possibility of examining the influence of external loads and environmental conditions, 

as well as manufacturing and assembly quality (relying on systemic variables) on the 

system’s reliability while the evaluation of the influence of changes of these factors 

and the impact of internal loads that depend on degradation and wear and tear 

processes call for application of more complex models.  

The features of Proportional Hazards Model result from the following 

assumptions: 

1. The ratio of intensity of damage for two different values of a systemic variable is 

independent of time; 

2. Intensity of defects for various values of the systemic variable is described by the 

following distribution. 

Based on the above assumptions we can obtain the following equation: 

 

 ( ) ( ) ( )βz,r tβz,t, 0λλ =  (1) 
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where: 

t – time 

z – systemic variable 

β - unknown parameter accounting for the influence of the systemic variable 

λ0(t) – intensity of defects for the value of the systemic variable adopted as the 

reference level 

If we assume, according to Cox model (1997) [1], that: 

 

 ( ) ββ zezr =,  (2) 

 

then we obtain: 

 

 ( ) ( ) βλβλ z
0 e tz,t, =  (3) 

 

The model that could be expressed by means of equation (1) is called the Proportional 

Hazards Model and we can generalize it to cover any number of systemic variables: 

 

 ( ) ( )n1n10n1n1 zzr tzzt ββλββλ ,...,,,...)(,...,,,..., =  (4) 

 

after incorporating the Cox model we will get: 

 

 ( ) ( ) nnz11z
0n1n1 e tzzt

ββλββλ ++
=

...
,...,,,...,  (5) 

 

The exponential form of function r(z,β) guarantees that the intensity function assumes 

non-negative values irrespective of the value of coefficients. 

The distribution used most frequently when analyzing reliability is the 

exponential distribution for which the intensity of defects is constant and thus also the 

relationship of intensity for two groups of data related to defined defects will also be 

constant, which meets the requirements of the Proportional Hazards Model. By 

assuming exponential distribution we rule out the possibility of accounting for the 

influence of time. For this reason we should consider the possibility of using Weibull 

distribution, however the conditions of its application must be assumed in such a way 

so that the assumptions of the Proportional Hazards Model are met. Accordingly the 

intensity of defects for Weibull distribution will have the following form: 

 

 1t −
=

α

αη
αλ  (6) 

 

while the intensity ratio will be: 
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The above relationship shows that the assumptions of the proportional model 

will be met for Weibull distribution only if the shape parameter remains constant for 

both data groups. Application Proportional Hazards Model in control diagnostic of 

bearings have been presented by authors in [4] 

Bayesian Updating is another approach enabling one to account for the 

information obtained not only during control diagnosis but also during observation of 

degradation and fatigue processes. 

BAYESIAN UPDATING 

The issue attracting the biggest interest from the point of view of value of diagnostic 

information is the use of the results of a diagnostic experiment for explaining the 

mechanism of influence of random factors. Let us note that generally this function 

can be analyzed as a conditional random variable. The conditions can be imposed by 

both, the relevantly defined external and internal factors, maintenance and repair 

activities, as well as the phase of defect development. Adoption of the last model 

results in use of Bayesian formulas, used to determine the influence of a posteriori 

information in the examination of probability distribution parameter. 

Let us consider the problem of estimation of the probability density function 

while using the conditional probability model f(x/W) for a given set of data 

D={x1,...,xN}. Since the proper value of parameter W is uncertain, thus in the case of 

Bayesian model we assume that the analyzed figure is a random variable with a 

defined distribution as per Jaynes’ rule [6]: if there are no reasons for adopting the a 

priori distribution, then monotonous distribution should be assumed. When observing 

the D data set, we can see the updating of the data for conditional a posteriori 

distribution f(W/D) as per Bayesian formula: 

 

 
)(

)()/(
)/(

Df

WfWDf
DWf

⋅
=  (8) 

 

A good illustration of the discussed method of using Bayesian formula to 

evaluate the parameters of distribution based on diagnostic information is 

demonstrated by Cruse in [2] where Bayesian theorem is used to determine the value 

of the parameters describing the growth of fatigue-related defect while accounting for 

the observation of crack development.  

The essence of this approach involves updating the estimated parameters of a 

probabilistic model in order to achieve higher compliance of results of modeling and 

observation. 
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In accordance with the assumptions presented above, we assume that the 

parameters that are either unknown or uncertain are random variables. The 

uncertainty of estimation of parameters can be associated with the changes of random 

variables with the use of Bayesian theorem. 

Then, while assuming that we will estimate the parameters of the a priori 

distribution of parameter a-f(a) and that D is an observation set, the parameters of the 

a posteriori distribution will have the following notation: 

 

 
)(

)()/(
)/(

Df

afaDf
Daf =  (9) 

 

where: ∫
∞

∞−

= daafaDfDf )()/()(  

Additionally it is assumed that the denominator which contains the integral of 

the function of the a posteriori probability density is constant and equals 1 and that 

f(D/a) is the probability of observation that can be expressed by a likelihood function. 

Equation (9) can be expressed in the following form: 

 

 )(]/[)/( afaDLKDaf B ⋅⋅=  (10) 

 

where: 

BK  - the normalizing constant 

]/[ aDL  - likelihood function 

As has been indicated in the quoted paper, such an approach allows reduction of 

uncertainty of evaluation conducted on the basis of a small number of results obtained 

in comparable conditions. 

Let us note that Bayesian formula (9) can be written as a ratio of a posteriori 

and a priori distribution: 

 

 )()/(
)(

)()/(
)/( afaDL

Df

afaDf
Daf ∝=  (11) 

 

In addition let us note that according to Jeffreys’s law [7] the a priori density of 

probability is proportionate to the square root of the determinant of the Fisher 

information matrix: 

 

 21aaf ))((det)( Ι∝  (12) 

 

where: 

( )






∂
∂−=Ι

2

2

a

aDL
Ea

/ln
)(  - is calculated as the matrix of average second derivatives of 

the logarithm of likelihood function determined on the basis of the 
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experiment’s results. 

Thus ultimately formula (11) has the following form: 

 

 21aaDLDaf ))()(det/()/( Ι∝  (13) 

 

While analyzing the experience from applying Bayesian formula in medical 

diagnosis [3], we can extend the presented method of using the a posteriori 

information to the task of similar evaluation of results obtained in a diagnostic 

experiment.  

Example 

A redesign is being reliability tested. Test data from the original design is available 

(on the based Weibull++ ReliaSoft). The original time-to-failure data set is as 

follows: 
1268 5405 6217 7949 9636 12016 
3640 5425 6736 8540 9847 12145 

4127 5814 7456 9158 10006 12477 

4173 5822 7523 9351 11747 12620 

5264 6206 7865 9624 11817 13650 

The test of the redesign yielded the following data set after 11911 hours of 

testing. 

Time F/S 

7908 F 

8843 F 

11911 F 
11911 S 
11911 S 
11911 S 
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Figure 1 – The shape parameter a priori and a posteriori probability density function. 
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Figure 2 – The shape parameter probability density function obtained by classical statistic 

methods and Bayesian Updating 
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Figure 3 – 90% confidence bounds of reliability function obtained by classical statistic 

methods and Bayesian Updating 
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Figure 4 – The probability density function of the time to failure obtained by classical 

statistic methods and Bayesian Updating 
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SUMMARY 

The quality of manufacturing and assembly as well as the occurring degradation 

processes can on the one hand lead to changes of intensity of defects and on the other 

be the reason of change of probability distribution parameters in the function of time 

and change of systemic variables. Use of vibroacoustic diagnosis methods offers a 

possibility for accounting for the influence of defect development phases, on the 

intensity of defects in the examined elements of kinematic nodes. Use of Proportional 

Hazards Model is possible in diagnosis conducted during inspections while 

operational diagnosis requires use of models in which the intensity of defects depends 

on two values: the systemic variable and the time of operation. Use of a posteriori 

information obtained as a result of observation or active diagnostic experiment and 

application of Bayesian model leads to reduction of uncertainty while estimating the 

impact of the degradation phase on an element’s reliability and while estimating the 

level of technical risk. Next task is the investigation of the limitation of Bayesian 

Updating application in vibroacoustic diagnostic.  
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