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Abstract 
In the present work analytical and experimental responses of a simple flexural plate are 
discussed. The plate is excited by a wall pressure distribution due to a turbulent boundary 
layer. It is deeply investigated the influence of the transducer mass on the response. 
Specifically, it was analysed if the random and convective nature of the load was such to alter 
the behaviour of the sensors. Exact analytical expansions were assembled in order to model 
the singularity of the response at the locations of the transducer mass and further to highlight 
the role played by the correlation areas. The results of the numerical model cross checked 
with the available experimental results obtained at the ælab/DPA wind-tunnel. 

INTRODUCTION 

Previous theoretical results compared with wind-tunnel measurements have been 
devoted to the analysis of the plate response under a turbulent boundary layer 
excitation. Specifically these past activities have demonstrated the possible role 
played by the correlation area when analysing the effect of transducer mass(es), [1,2].  
 

The present work represents a further step toward the same research goal. It has 
been performed by using a theoretical model build to get the stochastic response of a 
reference plate with a single concentrated mass and the configurations with two added 
masses. The solution responses have been built by using modal expansions with exact 
integrations, since a simply supported test plate was considered under the turbulent 
boundary layer excitation model proposed by Corcos (separable variables), [3]. The 
models of the plate and the turbulent boundary layer are the simplest possible, but the 
formulation of the problem contains all relevant parameters and it could be quickly 
exported in numerical predictive codes. The mass singularities were introduced by 
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using Dirac functions directly in the generalised mass matrix that is the mass operator 
projected on the modal base. The enclosed results seem to demonstrate the role 
played by the correlation area associated with such random and convective load. In 
fact, for the asymptotical flow speeds available in the ælab/DPA wind-tunnel facility, 
two main effects were measured and predicted: (i) the validity of the standard 
literature formula for analysing the effect of the transducer mass [4], and (ii) the 
transducer mass is not able to sense the presence of another mass outside of its 
correlation area, [2]. Particular attention was devoted to the application of the exact 
and validated theoretical model for increasing flow speeds. A comparison between 
configurations loaded with stochastic convective and non-convective excitations is 
discussed, too. The fundamental investigation on a plate response is reported in [4], 
where the effect of an added mass in the presence of a stochastic pressure distribution 
is discussed. Asymptotical relationships, obtained under the Asymptotical Modal 
Analysis (A.M.A.) hypotheses, are used to take into account the variations introduced 
by this added mass on the overall response of a test plate. The same relationships 
determine the measurable frequency range with reference to a given value of the 
accelerometer mass. It was studied if those relations can be applied also on the plate 
response when driven by a TBL. 

ANALYTICAL PLATE RESPONSE 

The fluctuations of the wall pressure field due to the TBL can be characterized by the 
cross spectral density function: 

 );(p);(p);(Xpp ω+ω=ω ξrrξ  (1) 
where the symbol < > denotes the statistical average, p is the pressure and ω 

denotes the excitation radian frequency. The vector r denotes the distance of a given 
point from the origin of the reference system, while the vector ξ denotes the distance 
between two given points, Fig.1. The Xpp function is complex and can be expressed 
as follows: 

 );()(S);(X ppp ωΓω=ω ξξ  (2) 
that is by using the product of the power spectral density (the auto power) Sp, 

and a function Γ depending on the geometry; both are frequency dependent. Γ will 
represent the Fourier transform of the correlation between two points whose distance 
is ξ(ξx,ξy): the square modulus of Γ is the coherence function. Corcos proposed a 
simplified formulation of the cross spectrum, [3]:   
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The coefficients αx and αy indicate the loss of coherence in longitudinal and 
transverse directions; Uc is the convection speed; i is the imaginary unit. The symbol 
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k denotes a constant value; U∞ is the undisturbed flow speed; Lx and Ly are the 
correlation lengths. For smooth walls, commonly accepted values are: αx=0.116, 
αy=0.7, and k=0.8, [5]. Enhanced models are due to Efimtsov, [6]. 
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Fig.1 – Sketch of the Elastic Plate (white area) in the Rigid Aerodynamic Baffle.   

The plate is thin, flat, rectangular and isotropic; it is simply supported on all 
four edges and mounted in an infinite rigid plane baffle flush with the TBL, Fig.1. It 
is assumed that any fluid-loading effect on the structural dynamic response can be 
neglected, too. The plate belongs to the xy plane, and the flexural out-of-plane 
displacements, named w(x,y;t),  are along the z axis. The general basic equation can 
be written as follows for the flexural plate transverse displacements under a generic 
pressure load p(x,y;t): 
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The side lengths of the plate are a and b, stream and cross wise, respectively, 

and h is the thickness; D is the flexural stiffness and E, ν and ρ denote the material 
constants. Along the sides all the displacements are zeroed. The displacement cross 
spectral density between any arbitrary pair of points, A(xA,yA) and B(xB,yB), in terms 
of modal expansion and due to an assigned stochastic distributed excitation, is given 
as follows, [7]: 
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The integrals defined by the symbol 

kjQQA  are well known as the modal 

acceptances; ψj and ωj are the mode shapes and the natural radian frequencies; mj and 
nj are the integers denoting the number of half wavelengths for the j-th mode; η is the 
structural damping. 
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The auto spectrum of the displacement at a selected point is given as follows: 
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It has also to be noted that it is possible to evaluate the mean response in terms 
of acceleration without any added mass by using the following relationship: 
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Due to the orthogonality of the modes, the modal cross terms do not give any 
contribution to these mean spectra. Similar quantities could be found by accepting an 
average over a selected number of points, NG: 
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The computational effort in evaluating Eq.(10) is obviously much greater than 
for Eq.(9). At increasing excitation frequency the differences between the two mean 
spectra become indistinguishable, and then the detailed local response is no longer 
required, [1,2].  

The mass of the system in Eq.(4) can be modified for taking into account the 
presence of a concentrated mass by using the Dirac δ function: 
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When evaluating the generalised mass matrix member, there will be several 
possibilities, according to the solution of the following integral for the mode pair i 
and j: 
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For the cases herein presented (single and double added masses), it was 
assumed that the modal base (mode shapes and natural frequencies) is unaffected by 
the (single and double) small added mass. The exact mode shapes and natural 
frequencies of the original uniform plate have been used as base expansion for 
calculating the mode shapes and natural frequencies of the plate with the added mass, 
[2,8,9 and 10]. At a random point T(xT,yT), a Dirac δ−function can be imposed in 
order to simulate the presence of a concentrated mass (macc), [10].  

The generalised mass matrix, can be written as follows:   
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In matrix form: 
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The hermitian of a given matrix (transpose and complex conjugate) is denoted 
by H. Sand denotes the response in terms of acceleration at the point A(xA,yA) with an 
added mass at T(xT,yT).  

An inversion of two complex matrices, LF and LFH, is required for each 
excitation frequency. These matrices are both square of order NM, where NM are the 
number of modes retained for getting the response. The choice of the given added 
masses was based on the same characteristic ratios presented in [4], as the mass of the 
plate over the added mass, for sake of completeness. 

The presence of two added masses can obtained simply modifying the 
expression of the generalised mass matrix; if one is at Q1(xQ1,yQ1), and the second at 
Q2(xQ2,yQ2), one gets:  
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EXPERIMENTAL MEASUREMENTS 

This work was preceded by a set of experimental measurements, here briefly recalled 
[1,2]. The measurements were carried out in the wind tunnel at the Department of 
Aeronautical Engineering, DPA.  

The characteristics of the aluminium plate are: a=0.768 m; b=0.328 m; 
h=0.0016 m; E=7.0 1010 Pa; v=0.33; ρ=2700 kg m-3. The plate was excited by the 
TBL produced in the wind tunnel at three different flow speeds: 25, 33 and 40 m/s. 
The last speed is the maximum possible in the DPA facility. The sensor array was 
composed by PCB accelerometers (mod.352B10) weighing 0.7 g each. No specific 
aerodynamic measurements for characterising the TBL loading the plate were 
performed.  

In order to investigate the effect of an added mass over the response, the 
selected strategy was the same used in [4] and detailed in [1 and 2]. The aim of this 
experimental acquisition was to get a generic kinematic response, R. At the i-th point, 
this  can be so written: 

 )P,,m U,(RR iadd ω=  (16) 
There is the possibility to average over two types of points, for each 

asymptotical flow speed (U), added mass (macc) and excitation frequency (ω). The 
first type of points, RO,  is represented by those without added mass but this mass is 
present at another one. The second type, RE, takes into account the presence of an 
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added mass in addition to the accelerometer. Two different means over the responses 
can be defined, accordingly. For analyzing the effect of the sensor mass, a response 
ratio (named γ) was accordingly defined: 

 [ ] 1
accOaccEacc ),m U,(R),m U,(R),m U,( −ωω=ωγ ; (17) 

This last ratio is the same as theoretically defined and measured in [4] for 
estimating the effect of the sensor mass; for sake of completeness, it is here reported 
the proposed approximation obtained with the Asymptotical Modal Analysis (AMA) 
for a given plate: 
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where macc denotes again the added mass, λ is the plate flexural wavelength, ρ 
is the mass density of the plate, h is the plate thickness and ω is the radian excitation 
frequency.  
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Figure 2: Response ratios [dB] vs. Freq.[Hz]– thick black line, g as in Eq.(19); thin lines 

obtained by experimental measurements, γ as in  Eq.(18) - from  [2]. 

In the related figures this equation will be always labelled as KSD. Eq.(19) 
allows the use of the cited miniature accelerometers in the whole frequency range of 
analysis, 0-10kHz (tolerance ≤ 1dB). For both the ratio, γ or g, the 0 dB value means 
no influence in the plate response due to the sensor mass. The results in Fig.2 
demonstrated that for the measured configurations, the relation in Eq.(19) can be used 
also for random and convective load, and further there is no dependence on the flow 
speed. The lack of agreement above 5Khz is due to the approximation associated with 
AMA, [4]. 

EXPERIMENTS FOR A SINGLE MASS 

The past numerical and experimental data have to be completed in order to be sure of 
the full validity of the results, [1,2]. A final comparison was prepared among exact 
structural responses replicating the experimental measurements. The added mass was 
8.4 g, and the number of modes used in the expansion was set to 980, for sake of 
convergence: the last mode resonates at 30697 Hz and the range of analysis can reach 
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8 kHz with full convergence. The mode shapes and natural frequencies of the 
configuration of the plate with a single mass were tested by using the finite element 
method. It is useful to recall the definition of the modal overlap factor: 

( ) ( ) ωωη=ωµ  n ; where n is the flexural modal density. For the present plate, the 
modal overlap factor, µ, becomes of unit order of magnitude at fM=935 Hz; for f>fM, 
one can assume that the modal behaviour disappears.  
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Figure 3: Response ratios [dB] vs. Freq.[Hz] for an added mass of 8.4 g at U=40 m/s. 

thick black line, g as in Eq.(19). 
 
The mean numerical responses presented in Fig.3 and 4 have been obtained by 

averaging over 4 random positions. The comparison in Fig.3 again demonstrates that 
the approximation proposed in Eq.(19) is still useful when a random and convective 
load is used; further, the exact model in Eq.(13,14) is able to reproduce the effect of 
the added mass. Then, having a validated numerical tool for analysing the effect, it 
was prepared a new comparison at wind tunnel speed well higher than the maximum 
available at the DPA, Fig.4, finding again the same kind of results. 
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Figure 4: Response ratios [dB] vs. Freq.[Hz] for an added mass of 8.4 g at U=115 m/s. 

thick black line, g as in Eq.(19). 
 
The present tests strengthen also the two masses analyses reported in [2]. The 

analytical responses under generic random convective and non-convective excitations 
were studied, too. The results are very preliminary and the analytical model seems to 
be able to take into account the role played by the correlation areas. The numerical 
runs are quite expensive in terms of computational time: 360 seconds per excitation 
frequency (FORTRAN code running on a Pentium IV-M / 256MB RAM /800 MHz). 
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SUMMARY 

The exact results shown in the present work demonstrated that the effect of an added 
mass over the structural response of a simple plate is not influenced by the  random 
and convective nature of the wall pressure distribution due to a turbulent boundary 
layer. Numerical calculations were performed on exact modal expansions in order to 
investigate the dynamic responses of a very simple plate. The tests have been 
developed by adding a single mass and calculating the response at the location of the 
added mass. This was simulated by using a Dirac δ function in the definition of the 
mass distribution and by modifying the generalised mass matrix to be used in the 
modal expansions. The validity of the analytical results here reported and compared 
with the experimental one demonstrated the applicability of the pursued theoretical 
approach. 

ACKNOWLEDGMENTS 

The Italian Ministry of the Education, University and Research partially 
supported this work through the COFIN programmes (2003095093 and 2005094847). 

REFERENCES 

[1] De Rosa S., Franco F., Capasso D., Costagliola S., Evaluating the Effect of a Sensor Mass in the 
Response of a Plate driven by a Turbulent Boundary Layer. An INCE Symposium Managing 
Uncertainties in Noise Measurements and Predictions, Le Mans (FR), 27-29 June 2005, Session 
Paper I-2. 

[2] De Rosa S., Franco F., Capasso D., Costagliola S., Predictive Models for Analysing the Influence 
of Added Masses on the Turbulence driven plate response. Recent Advances in Structural 
Dynamics Conference, ISVR Southampton (UK), 10-13 July 2006, paper 29.. 

[3] Corcos G. M., The resolution of turbulent pressure at the wall of a boundary layer. Journ. of 
Sound and Vibr., Vol.(6), 59-70, 1967 

[4] Kubota Y., Sekimoto S. and Dowell E.H., The High Frequency Response of a Plate Carrying a 
concentrated Mass. Journ. of Sound and Vibr., 138(2), 321-333, 1990 

[5] Blake W. K., Mechanics of flow-Induced sound and vibration. Vol.II, New York, Academic 
Press, 1986 

[6] Efimtsov B.M., Characteristics of the field of turbulent wall pressure fluctuations at large 
Reynolds numbers. Sov. Phys. Acoust. 28(4), 289-292, 1982. 

[7] Elishakoff I., Probabilistic methods in the theory of structures. John Wiley & Sons, ISBN 
0471875724, 1983. 

[8] Cunefare K. A., De Rosa S., An improved state-space method for coupled fluid-structure 
interaction analysis. Journ. of Acoust. Soc. of Am., 105(1), Jan 1999, 206-210. 

[9] Cunefare K. A., De Rosa S., The sensitivity of structural acoustic response to attachment feature 
scale representation. Journ. of Acoust. Soc. of Am., 106(6), Dec 1999, pp.3384-3393. 

[10] Rogers, L. C., “Derivative of eigenvalues and eigenvectors”, A.I.A.A. Journal Vol.8(5), May 
1970, pp.943-944. 


