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Abstract 
Accurate modeling of complex dynamic stiffness of the pneumatic springs is crucial for an 
efficient design of vibration isolation tables for precision instruments such as optical devices or 
nano-technology equipments. Besides pressurized air itself, diaphragm made of rubber 
materials, essentially employed for prevention of air leakage, plays a significant contribution to 
the total complex stiffness. Therefore, effects of the diaphragm should be taken care of 
precisely. The complex stiffness of an inflated diaphragm is difficult to predict or measure, 
since it is always working together with the pressurized air. In our earlier research, the complex 
stiffness of a diaphragm was indirectly estimated simply by subtracting stiffness of the 
pressurized air from measurement of the total complex stiffness for a single chamber 
pneumatic spring. In order to reflect dynamic stiffness of inflated diaphragm on the total 
stiffness at the initial design or design improvement stage, however, it is required to be able to 
predict beforehand. In this presentation, how to predict the complex stiffness of inflated rubber 
diaphragm by commercial FE codes(e.g. ABAQUS) will be discussed and the results will be 
compared with the indirectly measured values. 

INTRODUCTION 

Often, the vibration environments for precision instruments such as optical 
devices, nano-scale equipments, etc, are complied with pneumatic springs, which have 
lower stiffness than that of conventional rubber or coil springs. As the vibration 
regulations for precision instruments[1,2] become more stringent, it is required for the 
pneumatic springs to have better isolation performance, which could be efficiently 
done by design improvement. For this purpose, first of all, an accurate complex 
stiffness model of the pneumatic springs would be needed. 

A schematic diagram of a pneumatic spring is shown in Figure 1, where a piston 
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and a diaphragm enclose pressurized air inside 
a chamber. The rigid piston supports payload 
mass consisting an isolation table and/or a 
precision instrument on it. The diaphragm, a 
rubber membrane of complicated shape is 
installed for prevention of air leakage. Thus, 
the air in the pneumatic chamber eventually 
works together with the diaphragm as a 
stiffness element, when the vibrations of base 
or payload cause the compression/expansion of 
the air. 

Piston

Diaphragm

Pneumatic
chamber

Axis of
symmetry

Figure.1 Schematics of pneumatic spring 

Harris et. al.[3] and DeBra[4] proposed a model for pneumatic spring by 
describing just the stiffness characteristic of the air in the  chamber, which was done by 
consideration of thermo-dynamic relationship. But a practical pneumatic spring shows 
not only a higher stiffness value but also a higher damping characteristics than the 
model of the air inside the pneumatic chamber[5]. In other words, the stiffness of the 
air only cannot represent the actual behaviour of the pneumatic spring fully, which may 
be due to effects of the diaphragm. As the diaphragm expands by the pressurized air, it 
plays indeed the role of another complex stiffness element in the pneumatic springs. 
Hence it is very natural to include the complex stiffness of the diaphragm in the model 
of pneumatic springs. But it would not be easy to model accurately the diaphragm in an 
analytical way because it is a rubber membrane of complicated shape. Furthermore, the 
complex stiffness of diaphragm alone cannot be measured directly, because it is 
expandable only by pressurization of air inside the chamber as mentioned previously. 
 In our earlier research[6], the complex stiffness of a diaphragm was indirectly 
estimated simply by subtracting stiffness of the pressurized air from measurement of 
the total complex stiffness for a single chamber pneumatic spring.  Estimated results 
provided here exhibited quite a good match to the typical characteristics of viscoelastic 
material, which mainly constitutes diaphragm. Hence, it was believed that major 
portion of estimated results come from the complex stiffness of the diaphragm. But, 
there was an argument that the results might contain effects of unknown dynamics 
besides the diaphragm. This motivates us to validate the indirectly estimated results by 
a computational way using FEM. Furthermore, to facilitate the initial design or design 
improvement stage of pneumatic spring, it is previously required to be able to predict 
the complex stiffness of inflated diaphragm. Thus this paper will cover how to compute 
the complex stiffness of inflated diaphragm by commercial FE codes(e.g. ABAQUS). 
Then, comparison to the indirectly estimated results will be given subsequently. 

CALCULATION OF DIAPHRAGM COMPLEX STIFFNESS BY FEM 

In this study, two stages of both nonlinear static- and linear dynamic- FE analysis 
were employed for calculations of the diaphragm complex stiffness. The objective of 
nonlinear static analysis is just to obtain equilibrium configuration of inflated 
diaphragm after pressurization. In the linear dynamic analysis, then, the inflated 
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diaphragm under static equilibrium was sinusoidally excited to calculate its complex 
stiffness. 

Nonlinear static analysis 

         

Chamber wall

Deformed 
diaphragm

: Static pressure

Initial configuration 
of diaphragm

Piston wall

Axis of symmetry

 
 

Figure 2. Full view of diaphragm    Figure 3. FE model of diaphragm 
 

Since the diaphragm in Figure 2 experiences a large deformation(extention) 
during the inflation by static pressure, nonlinear static analysis is required. To do this 
end, cross section of diaphragm was assumed to be a semicircle, then a FE model 
shown in Figure 3 was firstly constructed by using one dimensional axi-symmetric 
elements(CAX4H,[7]) based on Mooney-Rivlin theory. Below, the constitutive 
equation of Mooney-Rivlin model[8] that can represent well the nonlinear static 
behaviour is presented. In a uni-axial uniform deformation, the stress σ is expressed by 

1 2 2

1σ=2(C λ+C ) λ-
λ

⎛ ⎞
⎜ ⎟
⎝ ⎠

            (1) 

where the extensional stretch λ(=1+ε) is related to the engineering strain ε. In equation 
(1), the coefficients C1 and C2 are constants to be determined from the static test data. 
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Figure.4 Experimental setup for the
static tension test
 

igure.5 Experimental results of static tension test
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Figure 4 shows a measurement set-up for the static test, where the specimen 
(Length:17mm, Width:3mm, Thickness:0.8mm) was installed in material testing 
system (model:DMA2980, TA instrument) driven via computer controlled servo- 
electric motor actuation systems. The specimen was stretched by 5~30%, i.e. λ=1.05 
~1.3, and stress measurements for each stretch were made after 20 minutes relaxation. 
Square boxes in Figure 5 represent measurement results that determine the values of C1 
and C2. The least square fit with Equation (1), when C1 and C2 have 8.7 and -0.8 [MPa] 
respectively, is shown as solid line in Figure 5. Now, applying a static pressure to the 
FE model of diaphragm can give deformed(inflated) configuration of diaphragm, as 
dotted line in Figure 3. 

Linear dynamic analysis 

In dynamic analysis, sinusoidal 
displacement excitations are applied 
to the piston side of statically 
deformed diaphragm obtained from 
static analysis, while calculating the 
output force at that point as depicted 
in Figure 6. It should be emphasized 
that static pressure used in prior 
analysis must be excluded to reject the 
transmitted force to piston caused by 
pressure. In addition, the complex 
modulus of typical rubber material 
depends on an amplitude of dynamic 

strain as well as pre-strain[8]. Therefore, characterization of complex modulus subject 
to pre-strain ε0, which corresponds to pressure induced static deformation, should be 
conducted in dynamic analysis stage. In this study, the following scheme was used to 
determine the pre-strain ε0 in dynamic characterization 

Deformation under 
dynamic loading, 
Length: ld:diaphragm

Statically deformed diaphragm
obtained from static analysis, 
Length: ls:diaphragm

Piston side
Input : dynamic amplitude
Output : force

Chamber wall

Figure.6 Linear dynamic analysis 

s:diaphragm 0:diaphragm
0

0:diaphragm

=
−

ε
l l

l
       (2) 

where ls:diaphragm and l0:diaphragm are both deformed- and initial- length of diaphragm. In 
the same manner, input dynamic strains εd for dynamic characterization can be 
resolved as follows. 

d:diaphragm s:diaphragm
d

s:diaphragm

=
−

ε
l l

l
       (3) 

 ld:diaphragm in the above denotes the deformed length of diaphragm under dynamic 
loading as expressed in Figure 6. But a bottleneck is that ld:diaphragm cannot be known 
without complex modulus data to be measured. In order to obtain approximate value of 
ld:diaphragm, secondary static analysis applying the dynamic displacement amplitude at 
the piston side was performed. Table 1 summarizes the dynamic displacement 
amplitude at the piston Xp used in the secondary static analysis and the resulting εd for 
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the dynamic characterization of specimen.  the dynamic characterization of specimen.  
  

Table.1 Summary of Xp and εd

  

Xp [mm] 0.05 0.07 0.09 0.15 0.30 0.50 
εd 1.3 x 10-5 1.8 x 10-5 2.4 x 10-5 4.0 x 10-5 8.1 x 10-5 14.1 x 10-5

By using the values of εd superimposed on pre-strain ε0(11%) of the specimen, 
measurements of the complex modulus between 0.2 and 25Hz were made, as 
represented in Figure 7. These complex modulus data were applied to the complex 
stiffness calculation of inflated diaphragm. For reference, different complex modulus 
data, which were obtained by the consideration of static-strain distribution in the 
diaphragm, need to be employed for each element of FE model. That may improve the 
quality of FE results, since the static-strain distributions of diaphragm are not uniform. 
But it is tedious and time-consuming works in state of the art of commercial FE codes. 
There was a systematic approach[9] that assigns complex modulus data by element. 
However, this technique will not be tried throughout this paper, while assigning a 
single complex modulus data for the whole elements. 

By using the values of εd superimposed on pre-strain ε0(11%) of the specimen, 
measurements of the complex modulus between 0.2 and 25Hz were made, as 
represented in Figure 7. These complex modulus data were applied to the complex 
stiffness calculation of inflated diaphragm. For reference, different complex modulus 
data, which were obtained by the consideration of static-strain distribution in the 
diaphragm, need to be employed for each element of FE model. That may improve the 
quality of FE results, since the static-strain distributions of diaphragm are not uniform. 
But it is tedious and time-consuming works in state of the art of commercial FE codes. 
There was a systematic approach[9] that assigns complex modulus data by element. 
However, this technique will not be tried throughout this paper, while assigning a 
single complex modulus data for the whole elements. 
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Figure.7 Measured complex modulus E *, ε0=11%; Storage modulus : Re[E *   ], loss factor : Im[E*    ]/Re[E *    ] 

INDIRECT ESTIMATION OF COMPLEX STIFFNESS OF 
DIAPHRAGM 

As mentioned in the introduction, the 
diaphragm will deform together with the pressure 
change inside the chamber. That is, measurements 
of the complex stiffness of the pneumatic spring 
contain effects of both air in the chamber and 
diaphragm in parallel as shown in Figure 8. 
Therefore, the complex stiffness of diaphragm can 
be obtained by simply subtracting the theoretical air 
stiffness ks from measurements of the pneumatic 
spring as follows. 

Piston

Complex stiffness of
diaphragm, k*

d

Stiffness of air, ks

Figure.8 Equivalent mechanical model
of pneumatic spring 

* *
d p exp pk (X , ) k (X , ) kω = ω −               (4) 
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where, k*
exp(Xp,ω) in Equation (4) denotes the experimentally measured complex 

stiffness of the pneumatic spring, which may have a frequency ω and dynamic 
amplitude Xp dependent characteristics. The stiffness of air ks, which is essential for the 
extraction of the complex stiffness of diaphragm, is shown in Equation (5). Full 
derivation of ks requires consideration of both the first law of thermodynamics and the 
ideal gas law in pneumatic chamber. Details can be found in reference[6]. 

2
0 p

s
0

p A
k

V
κ

=               (5) 

κ(=1.4) in the above denotes the specific heat ratio. And p0 and V0 designate supplied 
pressure and chamber volume, respectively, both of which are obtainable from direct 
measurements. Finally, Ap represents the equivalent piston cross-sectional area under 
the assumption that the dynamic behavior of the piston and the diaphragm can be 
represented by that of a single piston. Using the described variables above and 
Equations (4), (5), the complex stiffness of diaphragm can be measured indirectly. 
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Figure.9 Experimental setup for the measurements of the complex stiffness of pneumatic spring k*

exp
Table.2 Design specifications of employed pneumatic spring for experiments

Symbol Name Value 
κ Specific heat ratio of air 1.4  
p0 Supplied pressure 4.93×105 [Pa] 
V0 Chamber volume 8.1×10-4 [m3] 
Ap Effective piston area 5.3×10-3 [m2] 
ks(=κp0A

2
p /V0) Stiffness of air 23 [kN/m] 

perimental apparatus to apply the indirect measurement method explained 
wn in Figure 9. The pneumatic spring(Specifications are in Table 2.) with 

 pressure p0 was installed in the INSTRON dynamic material testing 
el:8502) driven via computer controlled servo-hydraulic actuation systems. 
ement and the force signals were measured by LVDT(Linear Variable 



ICSV13, July 2-6, 2006, Vienna, Austria 

Differential Transformer) and load cell respectively. The measured signals were 
post-processed to obtain the complex stiffness. The thick line in Figure 9 represents the 
pneumatic transmission line, and a pressure gauge was installed to measure the applied 
pressure in the chamber, i.e. the pressure at static equilibrium, p0. Various sinusoidal 
displacement excitations, all of which are the same as the conditions of material 
characterization(Listed in Table 1), were applied to the piston under a given preload 
corresponding to the weight of a payload mass(100kg). 

The measured complex stiffness of inflated diaphragm obtained by equation (4) 
is shown as solid lines in Figure 10. Real part and loss factor are related to the stiffness 
and damping characteristics, respectively. First of all, it is interesting to note that 
measured complex stiffness of diaphragm exhibits a frequency- and dynamic 
amplitude- dependent behavior. More precisely, the real part representing the elastic 
stiffness increases with frequency and decreases with dynamic amplitude, showing the 
behavior of a softening spring. Frequency dependence of the loss factor is not as 
significant as that of the stiffness while the loss factor increases with the dynamic 
amplitude. Those observed behaviors for the complex stiffness of inflated diaphragm 
nearly resembles to typical characteristics of viscoelastic materials[8]. From the above 
observations, it is reasonable to regard that the indirectly estimated complex stiffness is 
due to the one of diaphragm, mainly consisting of viscoelastic materials. But, the 
indirectly estimated results may contain effects of unknown dynamics besides the 
diaphragm, such as nonlinearity of the air due to compressibility. Hence, these 
experimental data need to be compared to the calculated ones. 
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Figure.10 Comparison between measured- and calculated- complex stiffness of inflated diaphragm k*

d;  
real part : Re[k*

d], loss factor : Im[k*
d]/Re[k*

d] 
 

The calculation results using FE codes were represented by dotted lines in Figure 
10. In the case of real part, those results of experiments and calculations exhibit 
qualitatively well matching characteristics for frequency- and dynamic amplitude- 
dependent behaviors(The discrepancies are from 3~15%). But it is not the case for loss 
factor showing a maximum discrepancy of 40%. Practically, it is extremely difficult to 
obtain a good prediction quality for the loss factor of viscoelastic materials, which 
seems to apply also our case. In addition, based on simple analysis for pneumatic 
spring, a fact was known that the stiffness of diaphragm rather than loss factor 
diminishes the improvement of vibration isolation performance of pneumatic spring. 
That is, more concentrations on the real part of complex stiffness are needed in 
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evaluating the quality of calculations with FE codes. By referring again to results of 
real part in Figure 10, calculation method proposed in this paper can be validated. 
Furthermore, major portion of the indirectly measured results can be believed as the 
complex stiffness of the diaphragm. 

CONCLUSIONS 

This paper discussed how to compute the complex stiffness of inflated diaphragm 
by commercial FE codes, in which two stages of both nonlinear static- and linear 
dynamic- FE analysis were employed. The calculated results were compared with the 
indirectly measured ones obtained just by subtraction of the stiffness of the air in 
chamber from the measured complex stiffness of the pneumatic spring. Good matching 
for real part of complex stiffness, which are primary important in the improvement of 
vibration isolation performance in pneumatic spring, was achieved.  Thus, it is 
concluded that calculation method proposed in this paper can be reasonably accepted 
for the calculation and/or prediction of diaphragm complex stiffness. Finally, the 
proposed method for calculation of the diaphragm complex stiffness can be usefully 
employed in the stage of design improvement of pneumatic spring. 
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