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Abstract 
A generalised approach based on reflection, transmission and propagation of waves is applied 
to the analysis of non-uniform Euler-Bernoulli beams whose properties vary rapidly but 
deterministically. The variation of the properties with position is such that no wave reflection 
occurs. Examples are given that include an Euler-Bernoulli beam with geometric variation 
that can be described by a polynomial. The state vector in the physical domain is transformed 
to the wave domain using displacement and internal force matrices. The wave amplitudes at 
one point are then related to those at another point by a propagation matrix, which is diagonal 
for the cases considered. By normalising the elements of the propagation matrix with respect 
to energy, their magnitudes are less than or equal to unity, so that the problem is always well-
posed. The energy transport velocity, at which energy is transported by the waves, is derived 
using the relationship between power and energy. It is shown that this energy velocity 
decreases as the cross-section decreases in size. A numerical example for wave transmission 
through a rectangular connector with linearly tapered thickness and constant width is 
presented. This well-conditioned approach can be used to predict the transmission of 
vibration through the connector without any approximation errors and at a low computational 
cost, irrespective of the frequency. 

INTRODUCTION 

The dynamic behaviour of a structure may be described in terms of waves and their 
propagation, reflection and transmission. This wave approach is especially suitable in 
the high frequency region since it does not require powerful computing resources and 
is well conditioned.  However, most real structures are too complicated to apply the 
wave approach easily. One such case is that of a non-uniform one-dimensional 
structure which has continuous variation in geometric and/or material properties. 
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In non-uniform waveguides with rapid variation in cross-section, the energy of 
one wave component is generally transferred to another, i.e. a positive-going wave is 
reflected to produce a negative-going, back-scattered, wave. However, previous work 
has showed that there are classes of non-uniform waveguides where such reflection 
does not occur. Cranch and Adler [1] considered the case of non-uniform Euler-
Bernoulli beams of rectangular cross-section. When the thickness varies with distance 
x along the beam as x , 2x  or 3x  while the width varies as an arbitrary power of x , 
they showed that the motion can be exactly described in terms of Bessel functions. 
When the cross-sectional area and moment of inertia of a non-uniform beam vary 
together as 4x , the equation of motion can be transformed into the wave equation 
[1],[2]. It has also been found that the motion of non-uniform beams with 
exponentially varying properties along the distance can be expressed simply in terms 
of exponential functions [1],[3]. Banerjee and Williams [4] used the solutions to 
obtain the exact dynamic stiffness matrices of some non-uniform beams. Petersson 
and Nijman [5] studied dynamic characteristics of the bending wave horn, featured by 
a broad-banded transition from vibrations governed by the properties at the mouth to 
vibrations governed by those at the throat. Krylov and Tilman [6] showed, using the 
geometrical acoustic approach, that incident flexural waves are trapped near the edge 
of the wedges, the thickness of which varies in a polynomial manner and the waves 
are therefore never reflected back. 

In this paper, a generalised wave approach based on reflection, transmission and 
propagation of waves is applied to an Euler-Bernoulli beam whose geometric 
properties can be described by a polynomial. The state vector in the physical domain 
is transformed to the wave domain using displacement and internal force matrices. 
The wave amplitudes at one point are then related to those at another point by a 
diagonal propagation matrix. The energy transport velocity, at which energy is 
transported by the waves, is derived using the relationship between power and energy. 
It is seen that this energy velocity decreases as the cross-section decreases in size. A 
numerical example for wave transmission through a rectangular connector with 
linearly tapered thickness and constant width is presented.  

BENDING WAVES IN A NON-UNIFORM BEAM 

Mace [7] developed a wave approach for bending motion of uniform beams including 
nearfield effects and Harland et al. [8] suggested a systematic formulation of the 
approach and applied this to wave propagation in uniform, fluid-filled beams. In this 
section, the same framework is applied to bending motion of a non-uniform Euler-
Bernoulli beam with geometric variation that can be described by a polynomial. 

Equation of motion  

The flexural displacement  for the free vibration of an Euler-Bernoulli beam at 
position 

( , )w x t
x  and time t  is governed by the differential equation [1] 
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where  is the modulus of elasticity of the beam, E I  the second moment of area, ρ  
the density and  the cross-sectional area. Consider a non-uniform beam as shown in 
Figure 1 where the material properties are constant but where  

A

 
 2( ) , ( )A IA x x I x xµα µα += =  (2a,b) 
 
where µ  is real and Aα  and Iα  are positive. When 1µ =  and the cross-sectional 
shape of the non-uniform beam is rectangular, the beam has linearly varying 
thickness and constant width. Assuming an i te ω  time dependence with angular 
frequency ω , substituting equation (2) into equation (1) gives  
 

 ( ) ( )( )
4 3 2

2 4 2
4 3 2

d d d2 2 1 2
d d d b

w w wx x k 0x w
x x x

µ µ µ+ + + + + − =  (3) 

 
where ( ) ( ) ( )24

bk x A x EI xρ ω=  is the flexural wavenumber at position x . An 

undamped structure is assumed for simplicity, so that  is real. Equation (3) can be 
factorised into the product of the Bessel equation and the modified Bessel equation 
[1] so that the general solution can be expressed by a linear combination of Hankel 
functions,  and , and modified Bessel functions,  and 

. The terms  represent positive- and negative-going propagating waves, 
respectively, and the terms 

bk

(2) (2 )bH k xµ
(1) (2 )bH k xµ (2 )bK k xµ

(2 )bI k xµ
(2,1)Hµ

Kµ  and Iµ  the positive- and negative-going nearfield 
waves, respectively. Thus the solution of equation (3) is given by  

 
 ( ) Nw x a a a aN

+ + − −= + + +  (4) 
 
where  are the amplitudes of the four waves at position , , ,Na a a a+ + − −

N x  given by 
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( ) ( )
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b N b
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µ
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2 ,

,

µ  (5a,b,c,d) 

 
where  are arbitrary constants, respectively. 1,2,3,4C

State of a cross-section in the wave domain  

The relationship between the state vector in the physical domain and the state vector 
in the wave domain is given by [8] 
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where w  and  are the generalized displacements and internal force vectors, and f ±Ψ  
and  are the displacement and internal force matrices describing the 
transformation. For bending motion, 

±Φ
[ ]d d Tw w x=w , [ ]TQ M=f ,  

and . Thus the displacement and internal force matrices for the non-
uniform beam are given by   

T

Na a+ + +⎡ ⎤= ⎣ ⎦a
T

Na a− − −⎡ ⎤⎣ ⎦=a
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For a uniform structure the elements of Ψ  and Φ  are independent of x, which is not 
the case for a non-uniform structure. 

Propagation of waves 

Consider two points x  and x L+  on the non-uniform beam. The wave amplitudes at 
these points are ( )x+a , ( )x−a , ( )x L+ +a  and ( )x L− +a , and are related by  
 
 ( ) ( ), ( ) ( )x L x x x+ + − − −+ = = ++a F a a F a L  (8a,b) 
 
where  are the propagation matrices.  These are found from equation (5) to be  ±F
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Since this case is reciprocal, it follows that −=+F F  for a suitable basis.  

Propagation of energy 

The kinetic and potential energy densities for bending motion are given by [9] 
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where  denotes the real part of the quantity. Assume that there is only a 
propagating positive-going wave with amplitude 

( )Re ⋅

a+ . The displacement of the beam 
will then be . Thus the time-averaged energy density ( )w x a+= E , given by 

= +E T V  where ⋅  indicates a time averaged quantity, is  
 
 ( ) ( )( )2 22 (2) (2)

2
1 1 2 2
4 b bA a H k x H k xµ µρ ω

−+
+= +E

2  (11) 

 
The time-averaged power for bending motion of a beam is [9] 
 

 ( ) ( )Re Re Re RewQ M
t t

Π w
x

∂ ⎛ ∂ ∂ ⎞⎛ ⎞ ⎛ ⎞= − ⋅ + ⋅⎜ ⎟ ⎜ ⎟⎜∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
⎟∂

 (12) 

 
Thus the energy flow associated with the propagating wave is  
 
 22 (2) (2 )b

b
b

c 2
A a H k x

k x µΠ ρ ω
π

−+=  (13) 

 
where  is the phase velocity of the bending wave at bc x . Noting that  is given by 
equation (5a), it follows that the power is constant along the beam.  

a+

The energy transport velocity , at which energy is transported by the waves, 
is defined by [10] 

Ec

 

 Ec
Π

=
E

 (14) 

 
Substituting equations (11) and (13) into equation (14) gives  
 
 ( ) 12(2) (2)

2
4 (2 ) (2 )E b

b b
b

cc H k x H k x
k x µ µπ

2

b

−

+= +  (15) 

 
The energy transport velocity associated with the propagating positive-going wave is 
the same as that associated with the propagating negative-going wave.  

Figure 2 shows the energy transport velocity, normalised with respect to , for 
the non-uniform beam with three different values of 

bc
µ . It is seen that the velocity 

decreases as µ  increases, i.e. as the degree of non-uniformity increases. When 
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2 bk x <<1, the velocity is approximately proportional to ( )2 4
bk x µ+ . When , 

the velocity asymptotes to the group velocity of the uniform beam, i.e. .  

2 1bk x >>

2E
b bc c→

Numerical example 

Consider a tapered connector of length  between two semi-infinite uniform 
rectangular beams with the same width but different thicknesses,  and , as shown 
in Figure 3. The material properties are invariant while the thickness of the connector 
varies with x (measured from the fictitious vertex at x = 0) as  

L
1h 2h

 
 1( )h x h x x1=  (16) 
 
where ( )1 1 2 1x h L h h= −  is the distance from the fictitious vertex to junction 1. 

Consider waves +a  incident from the left-hand side of junction 1. The relevant waves 
,  and  can then be related in terms of the reflection, transmission matrices at 

the junctions and the propagation matrices between the junctions [11].  
±b ±c +d

Figure 4 shows the power transmission coefficient τ  for the connector when a 
propagating wave is incident. In the figure,  is the effective wavenumber in the 
section between the two points 

,b mk

1x  and 2x  and is given by  
 

 
, 1

1 1 1 1
2 ( ) ( )b m b bk k x k x
⎛

= +⎜
⎝ ⎠2

⎞
⎟  (17) 

 
Thus the effective wavelength in the section is simply the average of the wavelengths 
at each end of the section. When , the power transmission coefficient , 1b mk L >> τ  
tends to 1, i.e. the power incident on the connector is totally transmitted when 
frequency increases or the non-uniformity decreases. When , the results 
asymptote to those of the case where the two uniform beams are directly connected 
without the connector [9].  

, 1b mk L <<

CONCLUDING REMARKS 

The wave approach has been applied to bending motion of a non-uniform Euler-
Bernoulli beam for which the cross-sectional area and the second moment of area 
vary as ( )A x xµ∝  and 2( )I x xµ+∝ . The displacement, internal force and propagation 
matrices for the non-uniform beam were obtained. These matrices provide a 
foundation for the systematic wave analysis. The energy transport velocity associated 
with the propagating bending wave in the non-uniform beams is derived exactly. It is 
shown that the energy velocity decreases towards the vertex. 

A numerical example for the wave transmission through a rectangular 
connector with linearly varying thickness and constant width is presented. This well-
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conditioned wave approach can be used to predict the transmission of vibration 
through the connector without any approximation errors and at a low computational 
cost, irrespective of the frequency. 
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Figure 1. A non-uniform beam with a polynomial variation in geometries. 
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Figure 2. Energy transport velocity for the polynomially varying beams: 
1µ =  (       ); 2µ =  (       ); 3µ =  (       ). 

 

 
Figure 3. A rectangular connector tapered in thickness. 
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Figure 4. Power transmission coefficient τ  for the connector when the propagating bending 
wave is incident: 2 1 2h h =  (       ); 2 1 4h h = (       ); 2 1 8h h = (       ); 2 1 16h h = (       ). 
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