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Abstract 
The use of arrays of microphones to locate and characterise acoustic sources is becoming 
more commonplace.  Beamforming algorithms are applied to the microphone outputs to focus 
the array at a point, or to scan an area or volume for sources.  The number and position of the 
microphones in a beamforming array are determined only by the frequency range of interest 
and the required spatial resolution.  However, these beamforming algorithms cannot yield 
realistic estimates of source strength when more than one source is present within the ‘beam’ 
of the array.  If realistic estimates of source strength distribution are required, more advanced 
signal processing algorithms, such as the inverse method, are required.  In these cases, it is 
accepted wisdom that the number of microphones must equal or exceed the number of 
sources present.  For many potential applications of these inverse methods, the size and 
complexity of the source regions of interest can lead to the requirement for prohibitively large 
numbers of microphones.  It is the purpose of this paper to demonstrate how, through re-
formulation of the inverse method, the requirements for the minimum number of 
microphones can be relaxed when certain assumptions can be made concerning the 
correlation structure of the source region. 

INTRODUCTION 

Many distributed acoustic sources consist of regions of source strength that are well 
correlated over a certain length scale but which are not well correlated with 
neighboring regions.  This paper deals with the application of inverse methods to 
yield reliable estimates of the source strength distribution of such sources from a 
knowledge of the radiated sound field at a finite number of sensor points.  In 
particular, studies of the minimum number of sensor points required are carried out 
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via novel formulations of the inverse problem which exploit prior knowledge of the 
source spatial correlation structure. 

It is demonstrated that, for the inverse problem to have a unique solution, the 
number of measured pressure cross-spectra must equal or exceed the number of 
unknown source cross-spectra.  Somewhat crucially for the current work, it should be 
noted that this criterion differs from the need for the number of measurement 
positions to exceed the number of source elements.  The source cross-spectral matrix 
associated with the type of source distribution described above has a block-like 
structure and a number of zero elements; the number of required cross-spectra are 
therefore in general less than the square of the number of source elements, as would 
be the case for a fully-populated matrix.  Exploitation of this source matrix structure 
leads to a significant relaxation in the minimum number of required pressure 
measurement sensors. 

THEORY 

Consider a number of pressure sensors M used to detect the sound field radiated by a 
number of sources N.  The vector p of complex pressures is related to the vector q of 
source strengths by the M × N matrix of Green functions such that 

 Gqp =  (1) 
The matrix Spp of pressure cross-spectra is then given by 
 [ ] [ ] HHHH GGSGGqqppS qqpp EE ===  (2) 

where the matrix Sqq of source strength cross-spectra is given by E[qqH] where E[ ] 
denotes the expectation operator and H denotes the Hermetian transpose [1].  When 
the source distribution consists of separate correlated regions, as described above, 
Sqq will have a block-like structure, thus: 
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where S1, S2 … SL are sub-matrices of source cross-spectra each of which represents 
a region of the total source strength distribution containing correlated source strength 
elements. The source sub-matrices are each square with dimensions (N1 × N1), (N2 × 
N2) … (NL × NL), such that the total number of source elements N = N1 + N2 + … NL.  
Similarly, one may partition the Green function matrix such that 
 [ ]LGGGG MLMM 21=  (4) 

where the dimensions of these Green function sub-matrices are (M × N1), (M × N2) … 
(M × NL) respectively.  Equation (2) can now be written as 
 HH

222
H
111 LLLpp GSGGSGGSGS L++=  (5) 

which, by using the identity 
 ( ) ( ) ( )XBAAXB νν ⊗=T  (6) 
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 can be rearranged to yield 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )LLLpp SGGSGGSGGS νννν *

2
*
221

*
11 ⊗+⊗+⊗= L  (7) 

where the operator ν (  ) orders the elements of a matrix into a column vector 
consisting of stacked rows of that matrix, and the operator ⊗ denotes the Kronecker 
product.  Finally, equation (7) can be arranged into a block matrix-vector 
multiplication such that 
 ( ) sGS Kpp =ν  (8) 

where 
 [ ]**

22
*
11 LLK GGGGGGG ⊗⊗⊗= MLMM  (9) 

and 

 ( ) ( ) ( )[ ]T
21 LSSSs ννν MLMM=  (10) 

The dimensions of GK are thus ( )22
2

2
1

2
LNNNM L++×  and those of s are 

( )22
2

2
1 LNNN L++ .  Equation (8) is now in a form suitable for inversion to yield the 

unknown source cross-spectra s.  For a solution to exist, the number of measured 
pressure cross-spectra must be equal to, or greater than, the number of unknown 
source cross spectra; that is we require ( )22

2
2
1

2
LNNNM L++≥ .  For all cases where the 

largest Ni is less than M, the formulation of the inverse problem in equation (8) shows 
that the minimum number of required sensors is always less than the number of 
source elements.  The least squares estimate of the solution of equation (8) is given by 

 [ ] ( )ppKKK SGGGs νH1H −
=  (11) 

the accuracy of which is determined by the conditioning of the Green function matrix 
GK and hence the geometry of the problem. If more assumptions are made about the 
structure of the source distribution, the minimum number of required sensors can be 
further reduced.  The following section describes some source distributions that are 
commonly found in aeroacoustic noise problems, along with ways in which the 
inverse method could be used to yield reliable estimates of the source strength 
distributions, and the radiated sound field, using ‘reduced’ numbers of pressure 
sensors. 

EXAMPLE SOURCE DISTRIBUTIONS 

The Line Source with Short Correlation Length 
 

 
Figure 1  A Line Source with Short Correlation Length 

 
 
Figure 1 shows a linear array of 6 sources where each source is correlated with its 
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nearest neighboring sources but uncorrelated with all others.  The source cross-
spectral matrix takes the form 
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where Sij denotes the cross-spectrum between source strengths qi and qj.  Applying 
the identity in equation (7) to equation (2) and deleting the zero elements of ( )qqSν  and 

the corresponding columns of ( )*GG ⊗ , gives the reduced order system 

 ( ) ( ) ( )qqRRppR SGGS νν *⊗=  (13) 

where the R subscript denotes the reduced-size resulting from removal of the zero 
elements of ( )qqSν . Estimates of the 16 remaining non-zero unknown source cross-

spectra via the inverse method follows from a least squares solution similar to 
equation (11) using 16 measured pressure cross-spectra; thus the outputs of the 6 
sources can be fully determined using only 4 suitably placed pressure sensors. 

The Two-Dimensional Source with Short Correlation Length 
 

 
Figure 2  A Two-Dimensional Source with Short Correlation Length 

 
Figure 2 shows a two-dimensional array of sources where each source is correlated 
with its nearest neighboring source in two dimensions.  The source cross-spectral 
matrix for this source takes the form 
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Where each of the sub-matrices are themselves banded and take the form of equation 
(12).  Solution of this problem is then similar to that for the line source above. 
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The Circular, Axi-Symmetric Source Distribution 
Figure 3 shows the geometry for a simulation into the performance of the above 
technique when further simplifications of the source correlation structure are possible.  
In this case, the circular disc source has correlation along a radial line, but zero 
correlation in the circumferential direction; furthermore, the entire source is axi-
symmetric such that the source strength distribution along any radial line is the same 
as that along any other.  The simulated source is divided into 1197 source elements 
with 19 sources along each of 63 radial lines.  In formulating the inverse problem, it 
is shown that the (axi-symmetric) field radiated by these 1197 sources can be fully 
determined using a far-field polar array of just 19 pressure sensors. 
 

 
Figure 3  Geometry for Circular Axi-Symmetric Source Simulations 

 
To illustrate the formulation of the inverse problem for this case, a similar but much 
simpler system is described.  Consider an axi-symmetric source as described but with 
just two radial lines containing two source elements each as shown in Figure 4.   

 

 
Figure 4  Simpler Source Distribution to Illustrate Formulation of the Inverse Method 

 
Considering the source correlation structure above, we can make the following 
simplifications 
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such that the source cross-spectral matrix becomes 
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where S is a (2 × 2) sub-matrix.  Splitting the Green function matrix G into two (2 × 
2) sub-matrices G1 and G2, equation (2) can be written 
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Applying the identity in equation (7) yields 
 ( ) ( ) ( ) ( ) ( )SGGSGGS ννν *

22
*
11 ⊗+⊗=pp  (18) 

From which the inverse problem can be written 

 ( ) ( ) ( )[ ] ( )ppSGGGGS νν 1*
22

*
11

−
⊗+⊗=  (19) 

Thus the 4 non-zero unknown source cross-spectra S can be determined from the 
outputs of just two pressure sensors. 

Figures 5 to 7 shows the result of extending this technique to the 1197 element 
source distribution shown in Figure 3.  For this simulation, the forward model 
(generation of the pressure sensor cross-spectra) involves the superposition of the 
outputs of 8192 monopoles distributed over the source disc.  The forward source 
cross-spectral matrix is computed following the spatial correlation assumptions above 
and is then coupled to a full matrix of free-space Green functions to compute the 
pressure cross-spectral matrix for 19 pressure sensors arranged in an arc.  To add a 
degree of realism to the simulation, and to test for robustness of the inversion process, 
10% of random noise is added to the pressure cross-spectral matrix prior to inversion. 
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Figure 5  True Far-Field Pressure Spectrum at 55° From Axis: 1197-Element Axi-Symmetric 

Source Distribution 
 
 

 
Figure 6  Reconstructed Far-Field Pressure Spectrum at 55° From Axis using Outputs From 
19 Pressure Sensors with 10% Random Noise Added : 1197-Element Axi-Symmetric Source 

Distribution 
 

 
Figure 7  Far-Field Directivity of 1197-Element Distributed Source: True Directivity (dashed 

line) and Reconstructed Directivity (solid line) using Outputs From 19 Far-Field Pressure 
Sensors with 10% Random Noise Added 
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DISCUSSION 

The application of the techniques described in this paper may bring about 
considerable savings in the number  of pressure sensors required for investigating 
distributed aeroacoustic sources, and hence the complexity and expense involved in 
such undertakings.  The sheer numbers of sensors required when applying the 
traditional, at-least-one-microphone-per-source-element, criterion to the radiation of 
high frequencies by large distributed sources can render the inverse method unusable 
in many cases.  Fortunately, many distributed sources encountered in the field of 
aeroacoustics have known spatial correlation structures within them that can be 
exploited, through suitable formulation of the inverse model, to drastically reduce the 
required number of sensors.  The simulations presented here suggest that these 
benefits may be real, and that the resultant matrix inversion may be robust, but it 
should be borne in mind that very little experimental verification of the application of 
these techniques has been carried out to date, although some early experiments 
carried out by the authors do show promise. 

CONCLUSIONS 

This paper describes a method for formulating the inverse problem associated with 
distributed aeroacoustic sources to exploit any known spatial correlation structures 
within the source.  The following conclusions may be drawn from the analysis and 
simulations presented above. 

• By exploiting any known correlation structures in distributed aeroacoustic 
sources, the excepted criterion for the minimum number of pressure sensors 
required for inverse source location and quantification may be relaxed. 

• Many different correlation structures can be built into the inverse model; three 
examples are described. 

• For large sources at high frequencies, when the source correlation lengths may 
be small, the potential saving in the required number of pressure sensors could 
be very significant. 

• Experimental verification of these techniques is required before confidence 
can be had in there usefulness in real-world applications. 
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