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Abstract

The use of arrays of microphones to locate and chamsetadoustic sources is becoming
more commonplace. Beamforming algorithms are applied tmitr®phone outputs to focus
the array at a point, or to scan an area or volumsdiarces. The number and position of the
microphones in a beamforming array are determined only bfréfaency range of interest
and the required spatial resolution. However, these beamnmigralgorithms cannot yield
realistic estimates of source strength when more ¢harsource is present within the ‘beam’
of the array. If realistic estimates of source stilemstribution are required, more advanced
signal processing algorithms, such as the inverse methodecarieed. In these cases, it is
accepted wisdom that the number of microphones must equexceed the number of
sources present. For many potential applications of tinegese methods, the size and
complexity of the source regions of interest can leati¢ requirement for prohibitively large
numbers of microphones. It is the purpose of this papernwmgrate how, through re-
formulation of the inverse method, the requirements tloe minimum number of
microphones can be relaxed when certain assumptions camable concerning the
correlation structure of the source region.

INTRODUCTION

Many distributed acoustic sources consist of region®woifce strength that are well
correlated over a certain length scale but which are well correlated with

neighboring regions. This paper deals with the applicatibmverse methods to
yield reliable estimates of the source strength distobutif such sources from a
knowledge of the radiated sound field at a finite numbersarisor points. In
particular, studies of the minimum number of sensortpaquired are carried out
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via novel formulations of the inverse problem which ekpgtoior knowledge of the
source spatial correlation structure.

It is demonstrated that, for the inverse problem to lauaique solution, the
number of measured pressure cross-spectra must equal @d ekee number of
unknown source cross-spectra. Somewhat crucialyh®ctirrent work, it should be
noted that this criterion differs from the need ftve number of measurement
positions to exceed the number of source elements.sduree cross-spectral matrix
associated with the type of source distribution descréeove has a block-like
structure and a number of zero elements; the numbezqoired cross-spectra are
therefore in general less than the square of the nuaflsmurce elements, as would
be the case for a fully-populated matrix. Exploitatadrthis source matrix structure
leads to a significant relaxation in the minimum numioé required pressure
measurement sensors.

THEORY

Consider a number of pressure sendbnssed to detect the sound field radiated by a
number of sourceN. The vectop of complex pressures is related to the veqtof
source strengths by tiv x N matrix of Green functions such that

p=0Gq Q)
The matrixSy, of pressure cross-spectra is then given by
S,, = Elpp"'|= ElGag"G"|=Gs,G" )

where the matribSyq of source strength cross-spectra is giverEmqg™] wheref[ |
denotes the expectation operator and H denotes the Hemmenspose [1]. When
the source distribution consists of separate coreklegdgions, as described above,
Sqq will have a block-like structure, thus:

S, 0 - 0
Sw | io5 o )
0 0 - S

whereS;, S; ... S are sub-matrices of source cross-spectra each of wdpchsents
a region of the total source strength distribution comtgicorrelated source strength
elements. The source sub-matrices are each squardimiinsions i; x Nj), (N2 X
N2) ... (NL X Np), such that the total number of source elembintsN; + N> + ... NL.
Similarly, one may partition the Green function masuch that
G=[G,!G,! 1G] (4)
where the dimensions of these Green function sulpigaatare M x Ni), (M x Np) ...
(M x N_) respectively. Equation (2) can now be written as
Spp = GlSlGr + stng +"'GLSLG||:| (5)
which, by using the identity
v(AXBT)=(A O B(X) (6)
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can be rearranged to yield

V(Spp): (Gl 0 G;)/(Sl)+ (Gz O G*z)/(sz)+ "'(GL O G*L)/(SL) (7)
where the operator ( ) orders the elements of a matrix into a columotae
consisting of stacked rows of that matrix, and the dpefa denotes the Kronecker

product. Finally, equation (7) can be arranged into a blowktrix-vector
multiplication such that

v(S,,)=Gys 8)
where
G, =|6,06G,:G6,0G,:G, 0G| 9)
and
s=[v(S)(S,) (S (10)

The dimensions ofGk are thus m2x(N2+NZ2+...N?) and those ofs are
(NZ+NZ+..-N2). Equation (8) is now in a form suitable for inversionyteld the
unknown source cross-speca For a solution to exist, the number of measured
pressure cross-spectra must be equal to, or greater tleanumhber of unknown
source cross spectra; that is we require= (N? + N2 +---N2). For all cases where the
largestN; is less tham, the formulation of the inverse problem in equation (®)ves
that the minimum number of required sensors is alwaygs tkan the number of
source elements. The least squares estimate oflth®smf equation (8) is given by

s=[ctc, | clv(s,,) (11)
the accuracy of which is determined by the conditioninthefGreen function matrix
Gk and hence the geometry of the problem. If more assungpéice made about the
structure of the source distribution, the minimum nundderequired sensors can be
further reduced. The following section describes some sailistributions that are
commonly found in aeroacoustic noise problems, along wilys in which the
inverse method could be used to yield reliable estimatetheofsource strength
distributions, and the radiated sound field, using ‘reducegthbers of pressure
sensors.

EXAMPLE SOURCE DISTRIBUTIONS

The Line Source with Short Correlation Length

correlation
length

ol ¥ I Nele
Figurel A Line Sourcewith Short Correlation Length

Figure 1 shows a linear array of 6 sources where eaaicesis correlated with its
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nearest neighboring sources but uncorrelated with aéreth The source cross-
spectral matrix takes the form
S, S, 0 0 0 0]
Sy S, S 0 0 0
0 0O O
5.2 0 S S S (12)
O O S43 S44 S45 O
0 0 0 S, S Se
0 0 0 0 S5 Si]

where $ denotes the cross-spectrum between source strenginsl g Applying
the identity in equation (7) to equation (2) and deletingzéne elements of(s_ ) and
the corresponding columns (oj 0 G*), gives the reduced order system

Vel(S,)= (G 0G )avels,) (13)
where the R subscript denotes the reduced-size resuling removal of the zero
elements ofy(s_). Estimates of the 16 remaining non-zero unknown Sourcgs-Cro

spectra via the inverse method follows from a least squso&gion similar to
equation (11) using 16 measured pressure cross-spectra; thostpoes of the 6
sources can be fully determined using only 4 suitably placstspre sensors.

The Two-Dimensional Sourcewith Short Correlation Length
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Figure2 A Two-Dimensional Sourcewith Short Correlation Length

Figure 2 shows a two-dimensional array of sources wéaché source is correlated
with its nearest neighboring source in two dimensionfie 3ource cross-spectral
matrix for this source takes the form

Sqq = ........ (14)

...........................................................

|01 0 0 0 :Sgs: See]
Where each of the sub-matrices are themselves bandeidle the form of equation
(12). Solution of this problem is then similar to thatthe line source above.
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The Circular, Axi-Symmetric Source Distribution

Figure 3 shows the geometry for a simulation into thdopmance of the above
technique when further simplifications of the sourceealation structure are possible.
In this case, the circular disc source has corre@lationg a radial line, but zero
correlation in the circumferential direction; furthemra, the entire source is axi-
symmetric such that the source strength distributiongaany radial line is the same
as that along any other. The simulated source is dinidedl197 source elements
with 19 sources along each of 63 radial lines. In foatmd the inverse problem, it
is shown that the (axi-symmetric) field radiated bysthd197 sources can be fully
determined using a far-field polar array of just 19 pressuisosgn

19 radial =

Sources: ; ey
63 circumf® )

Source Disc -

L
Axi_s 5~

1. 19 element polar array (5° spacing) = e
0 .’f A

__!___..----"'-'-

A

45°

Figure 3 Geometry for Circular Axi-Symmetric Source Smulations

10°

To illustrate the formulation of the inverse problem tlois case, a similar but much
simpler system is described. Consider an axi-symmnsiricce as described but with
just two radial lines containing two source elements eadtmawn in Figure 4.

9‘2@

Figure4 Smpler Source Distribution to Illustrate Formulation of the Inverse Method
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Considering the source correlation structure above,care make the following
simplifications
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suEaq)=s,
S, =5, = Sz
S =5 =5, (15)
SH=545=S
S3=5,=55=5,=0
S?. S41 = 83.2 42 = O
such that the source cross-spectral matrix becomes
S S 0 0
. 0O O SO0
S = > 5 = (16)
0 0 § § 0 S
0 0 S S

whereS is a (2x 2) sub-matrix. Splitting the Green function ma@ into two (2x
2) sub-matrice&: andGg, equation (2) can be written

S 0]|G;
S, =16, G ]{O S}{Gj G,SG! +G,SGY (17)
Applying the identity in equation (7) yields
v(s,,)=(G, 06 p(S)+(G, DG M(S) (18)
From which the inverse problem can be written
v(s)=[6,06;)+(G, 06, ) vis,) (19)

Thus the 4 non-zero unknown source cross-spe&kttan be determined from the
outputs of just two pressure sensors.

Figures 5 to 7 shows the result of extending thchnique to the 1197 element
source distribution shown in Figure 3. For thisngiation, the forward model
(generation of the pressure sensor cross-specivajves the superposition of the
outputs of 8192 monopoles distributed over the @dudisc. The forward source
cross-spectral matrix is computed following thetspa&orrelation assumptions above
and is then coupled to a full matrix of free-sp&&men functions to compute the
pressure cross-spectral matrix for 19 pressureosersranged in an arc. To add a
degree of realism to the simulation, and to testdbustness of the inversion process,
10% of random noise is added to the pressure smestral matrix prior to inversion.
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Frequency (Hz)

Figure5 True Far-Field Pressure Spectrum at 55 °From Axis: 1197-Element Axi-Symmetric
Source Distribution

20

Frequency (Hz)

Figure 6 Reconstructed Far-Field Pressure Spectrum at 55 °From Axis using Outputs From
19 Pressure Sensors with 10% Random Noise Added : 1197-Element Axi-Symmetric Source
Distribution

Figure 7 Far-Field Directivity of 1197-Element Distribu®durce: True Directivity (dashed
line) and Reconstructed Directivity (solid line) using Outgtrizm 19 Far-Field Pressure
Sensors with 10% Random Noise Added
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DISCUSSION

The application of the techniques described in this paper bnag about
considerable savings in the number of pressure sensorsetedpr investigating
distributed aeroacoustic sources, and hence the conypsnd expense involved in
such undertakings. The sheer numbers of sensors requived applying the
traditional, at-least-one-microphone-per-source-elen@iigrion to the radiation of
high frequencies by large distributed sources can rendanvlerse method unusable
in many cases. Fortunately, many distributed sourcesurtexed in the field of
aeroacoustics have known spatial correlation strustwithin them that can be
exploited, through suitable formulation of the inversedeipto drastically reduce the
required number of sensors. The simulations presergesl $uggest that these
benefits may be real, and that the resultant matsnersion may be robust, but it
should be borne in mind that very little experimentaifioation of the application of
these techniques has been carried out to date, although swlypeexperiments
carried out by the authors do show promise.

CONCLUSIONS

This paper describes a method for formulating the inversklgmn associated with
distributed aeroacoustic sources to exploit any knowtiaspaorrelation structures
within the source. The following conclusions may be dr&wm the analysis and
simulations presented above.

* By exploiting any known correlation structures in digited aeroacoustic
sources, the excepted criterion for the minimum nunalbgressure sensors
required for inverse source location and quantificatiop bearelaxed.

* Many different correlation structures can be builbithe inverse model; three
examples are described.

» For large sources at high frequencies, when the souradatmn lengths may
be small, the potential saving in the required numberesfgure sensors could
be very significant.

» Experimental verification of these techniques is requivefbre confidence
can be had in there usefulness in real-world applicaition
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