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Abstract 
This paper presents a non-linear model for the external grinding of a cylindrical work-piece. 
A system of non-linear differential equations for the vibrations of the tool and the work-piece 
is obtained. Non-linearity comes from the cutting force dependence on the feeding velocity 
and depth of cut. Results of simulation are discussed. A chaotic regime is found for realistic 
values of the grinding parameters. 

INTRODUCTION 

The accuracy of the ground surfaces is a major concern in grinding processes. The 
non-uniformity of these surfaces is considered to stem from vibrations arising from 
the interactions of the tool-work-piece-machine system. This interaction is non-linear 
due to expressions of the cutting force as a function of the feeding velocity and depth 
of cut. It is the aim of this paper to investigate the consequences of these non-
linearities on the dynamics of the system. In particular we shall examine the 
possibility of chaotic motions of the tool and work-piece, as might be expected from 
the nature of the self-excited oscillations the system encounters. 
 There are two approaches to the understanding of the system dynamics. The 
direct method consists in modelling this dynamics, whereas the inverse method aims 
at analysing the experimental time series in order to deduce the nature of the 
underlying dynamics. Here, we shall model the grinding system, including the work-
piece, in order to determine if a chaotic regime can be found. In previous models, 
only the vibrations of the tool were considered. However, experiments show that the 
vibrations of the work-piece are of importance for the accuracy of the ground surface. 
In our model, the tool has two degrees of freedom, while the work-piece has also one 
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degree of freedom, orthogonal to the feeding velocity. The resulting differential 
equations of motion are coupled through the expression of the cutting force. 

A MODEL FOR ORTHOGONAL GRINDING 

We consider an orthogonal grinding machine where the cutting edge is parallel to the 
work-piece surface and normal to the cutting direction (see Fig. 1). We assume that 
the depth of cut, denoted by  is much smaller than the cutting width. The tool and 
the work-piece have rotational motions with angular speed ω  and ω , respectively. 
In what follows, the indexes  and  refer to the grinding wheel and to the work-
piece respectively. In Fig. 1(a)  denotes the pre-set value for the depth of cut. The 
work-piece, considered homogeneous and infinitely long in the -direction, moves in 
this direction with velocity v .  and  denote the pre-set values for the feeding 
speed and the tangential velocity of the work-piece, respectively. Due to the cutting 
force the tool is deformed. Its visco-elastic and inertial properties are described by a 
two degrees of freedom oscillator, which is presented in Fig. 1(b). We assume that the 
work-piece also vibrates, but only in the -axis direction. Its visco-elastic and 
inertial properties are therefore described by a one-degree of freedom oscillator, 
shown in Fig. 1(c). 
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Figure 1 – A model for orthogonal grinding 

 The state variables of the process are the displacement of the cutting edge in the 
 directions and of the work-piece in the  direction . The dynamics 

of these state variables is given by the following differential equations: 
( yx, ) )y ( wtt yyx ,,

xttxttxtt Fxkxcxm =++ &&& ; m ; . yttyttytt Fykycy =++ &&& ywwwwww Fykycym −=++ &&& (1) 

 The friction velocity in the direction of the -axis is given by y
R
vv f = , where 

 is a factor due to plastic shear deformation, which value is R
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 In addition, the following instantaneous relations are satisfied: 

, , ( ) ( ) ( )tytywtw wts +−= ( ) ( )txvtv tw &−= ( ) ( )
( ) ( ) ( )tyty
tR
tvtv wtf && +−= . 

 In Equations (1) we assume that the inertial mass of the tool is the same for 
both directions  and . The dependence between the components  and  of the 
cutting force is expressed by , where  is a friction coefficient. 
According to the experimental data, the component  of the cutting force is of the 
form 

x y xF yF

xFy FKF ⋅= FK

xF

6.0wFx ∝ . (2) 
Using that dependence on the depth of cut, and otherwise following Grabec for the 
dependence on the velocity v , the expressions of the cutting force , and friction 
coefficient  are then taken as: 
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where  is the Heaviside function and sgn is the sign function. The parameters , 
, , , , , , ,  denote specific cutting conditions. Due to the 

exponent  in relation (2), the present model exhibits a higher non-linearity than 
the previous models. 
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DIMENSIONLESS SYSTEM 

We shall introduce the non-dimensional time as 0
0
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obtain from the previous equations the non-dimensional system: 
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(5) 

In the next section, this system will be solved using a fourth-order Runge-Kutta 
method. 

SYSTEM SOLUTION 

Number Of Critical Points 

In this paragraph we consider the Heaviside and sign functions to be  and 
. The critical points of the system (5) are obtained by equating the right hand 

side terms of the system to zero. The first, second and third equation provide 
immediately the values: , , , which, replaced in the rest of the 
equations, lead to: 
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 In these conditions, when Θ  and , the inequation Z  is 
always satisfied. From the last two relations of the system (6) we now obtain 
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In the working interval 







−ψ1

,0 sW
, the left hand side term is a strictly increasing 

linear function, while the right hand side term is a strictly decreasing function. In 
these conditions the equation (7), considered as an equation for the variable , has 
one and only one solution. Therefore, there is also one solution for  and  and 
only one critical point. 

3Z
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 Following references, the working parameters are as follows: C , , 
, , , , , , , , 
, , , . We shall consider two cases based on 

typical experimental data. The first case is characterised by W , V , and 
the second one by W , V . For these values, instabilities for the motions 
of the tool-work-piece system were observed. For the first considered case one finds 
the following values for the critical point co-ordinates: , , 

; for the second case the critical point is given by: , 
, . A standard linear stability analysis of this critical 

point leads to the characteristic equation 
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028187.025414.055931.184301.029853.258544.0 23456 =++++++ λλλλλλ  (8) 
for the first case. In the second case the characteristic equation is 

036707.020105.080460.170483.043827.249244.0 23456 =++++++ λλλλλλ , (9) 
where  is the complex rate of growth of the perturbation. It was checked that in 
both cases the six order determinant for the Routh-Hurwitz criterion has negative 
values. Thus, the critical point is unstable in the linear approximation, and it is 
therefore unstable in the original system. 

λ

Numerical Analysis 

Due to the complex form of the system (5) a numerical solution is looked for. The 
working parameters are described in the previous section. In addition, we consider 

, . The initial conditions are: , , , 
, , . 
025.0=∆T

04 =Z 5Z

4106.1 ×=iterN
0 06 =Z

6.01 =Z 3.02 =Z 03 =Z
=

 One can observe the existence of a transient regime in the studied cases (see 
Fig. 2, a). A clear transition exists between this regime and the rest of the time series. 
The situation is quite different for different variables, i. e. the route to the second 
regime and its length differ from variable to variable. Beyond the transient regime, 
the time series presents irregularity and looks random. In our study we have a six-
dimension phase space. We represent projections on two dimensions of this space 
(see Fig. 2, b). A characteristic of chaotic motion is that its portrait in the phase space 
is defined by a non-closed curve which occupies a well-defined zone. This 
characteristic appears very clearly in the figures, which show both linear instability 
and global stability of the critical point. The non-linearity of the cutting force is 
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clearly seen in Fig. 3. It has two reasons: the first one is its dependence on the depth 
of cut. The second is the use of the Heaviside function to represent the loss of contact 
between the tool and the work-piece. The reader can observe that there is no rule for 
the determination of the period when the tool is in contact with the work-piece and 
when it is not. This variation of the cutting force is at the origin of the waving form of 
the work-piece surface. 

 
a) 

 
b) 

Figure 2 – a) Variation of  versus T  for the second case. One can observe a period of 
transition for T  between 0 and 25 time units; b) Variation of  versus  for the second 

case. Initial conditions are , , , , , . 
The critical point is at , , . The reader can 

easy see the instability of the critical point, as well as its global stability 

6Z

1Z
0=

5Z

4Z
0−=

3Z

5 =26.0=
25619.

02 =
03 =Z

Z 70.03 =Z
69989. 5Z

0=
.

2.0−Z
19441

06 =Z

1Z

 
Figure 3 – Variation of the force  versus  in the first case. One can observe the cross 
points and zone where the force is null (i. e. the tool looses the contact with the work-piece). 

Time T  was elected between 100 and 300 time units 
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 The reader is now asked to refer to Fig. 4, a showing the entropy of the system. 
The entropy is a measure of the disorder degree in the system. It is clear from Fig. 4, 
a that the entropy has large values, which is a property of a chaotic system, among 
others. One can observe that the power spectra are continuous with broad-band basis 
and peaks (see Fig. 4, b) due to the periodical components of the flow. This aspect of 
the power spectra is also compatible with chaos. The Lyapunov exponents are 
calculated as functions of  and W  (see Fig. 5). It is known that a chaotic system is 
characterised by at least one positive Lyapunov exponent, the sum of Lyapunov 
exponents being negative. We have one well defined positive exponent (for the 
variable , see Fig. 5, a) and the sum of Lyapunov exponents is negative. The 
convergence of all the above results is a clear indication that the dynamics is indeed 
chaotic. Referring now to the Fig. 5, b and c one can see that if the Lyapunov 
exponent for the variable  (this variable is the displacement in the -direction) 
increases, the Lyapunov exponent for the variable  (the velocity in the -
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direction) decreases when the depth of cut W  increases. This phenomenon is 
indicative of the transformation of the energy input into potential energy (given by 
displacement) or in kinetic energy (given by velocity). For this reason we believe that 
the Lyapunov exponents can be considered a measure of the transformation of 
energy. 

s
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38

 
a) 

 
b) 

Figure 4 – a) Variation of the entropy for the variable  versus  in the second case; b) 
Power spectrum for the variable  in the second case 
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d) 

Figure 5 – a) Lyapunov exponent for  versus . In this case W  and V . 
The reader can observe that this Lyapunov exponent is positive; b) Lyapunov exponent for 

 versus W . In this case  and V . The reader can see that this Lyapunov 
exponent is positive; c) Lyapunov exponent for  versus W . In this case  and 

. The reader can see that this Lyapunov exponent is positive; d) Dimension of the 
strange attractor versus  in the first case. One can see that this dimension is between 5.3 

and 5.9 
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 The Lyapunov dimension of the strange attractor is calculated by using the 
Kaplan-Yorke conjecture. For our model we found the dimension of the strange 
attractor to be between 5.3 and 5.9 (see Fig. 5, d). This value proves that all six 
variables are needed to describe the chaotic dynamics of the system and that there is 
no reduction in the number of variables. In Grabec’s model (which considered only 
four variables) the dimension of strange attractor was found between 2.4 and 2.7. In 
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addition, the dimension of the strange attractor implies that previous models did not 
capture all the dynamics. 
 All the results presented above lead to the conclusion that there exists a chaotic 
regime in the grinding processes. Our model considers the interaction between the 
work-piece and the rest of the system, which is a new approach in comparison with 
the previous models. We also found different regimes for the transformation of 
energy (kinetic, elastic) inside the chaotic region.  

CONCLUSIONS 

In our paper we presented a non-linear model with three degrees of freedom for the 
external cylindrical grinding. We considered the vibrations of the tool in two 
directions and the vibrations of the work-piece in one direction. The instability of the 
cutting process stems from three factors: the dependence of the cutting force on the 
feeding velocity and the depth of cut, and the dependence of the friction coefficient 
on the friction velocity. We proved the existence of one critical point and its linear 
instability. We also proved unambiguously the existence of chaos from the clear 
convergence of indications from various methods of different nature. Furthermore, 
different regimes for the transformation of the input energy were found in the chaotic 
region, either in elastic energy or in kinetic energy, depending on the depth of cut. 
The question arises of what is the number of relevant variables in order to describe 
the chaotic dynamics of the system when the model includes a high number of 
degrees of freedom, or in other words, if there is a significant reduction in the number 
of variables in such models. This will be the object of future work. 
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