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Abstract 
The talk is concerned with applicability ranges of the three theories (Kirchhoff theory, 
Timoshenko theory and elasto-dynamics) to describe time harmonic behaviour of elastic 
plates with and without heavy fluid loading. Both the free wave propagation in an unbounded 
plate and the eigenfrequency spectra of plates of finite length are addressed. The findings for 
an elementary case of the absence of heavy fluid loading are compared with those in the case 
of a plate with heavy fluid loading. Some useful observations are made and their physical 
interpretation is given. The role of fluid’s compressibility is also explained.  

INTRODUCTION 

Two issues, which have been addressed rather unevenly in the literature, are 
considered in this paper. The first one is the relevance of the second spectrum of 
eigenfrequencies predicted by Timoshenko beam theory. Although this aspect might 
be regarded as a classical one, there is still a room for its misinterpretation. To gain a 
physical insight into the origin of such a misinterpretation and to clarify the subject, 
the problem of determination of eigenfrequencies is put into the context of analysis of 
dispersion curves predicted by Timoshenko beam theory and by a solution of the 
problem in elasto-dynamics. To remove any ambiguities, the interpretation is also 
extended to the assessment of the validity of Bernoulli-Euler model. The second issue 
considered here is the role of heavy fluid loading, particularly, the role of fluid’s 
compressibility, in dynamics of thin plates, described by Kirchhoff plate theory and 
by Timoshenko theory. To the best of the author’s knowledge, this aspect has not yet 
been highlighted in the literature. 

As regarding the first issue discussed in the previous paragraph, it is most 
expedient to refer to the paper [5], which contains a comprehensive list of 21 
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publications on the subject. The wave propagation in Kirhhoff plates under heavy 
fluid loading is discussed, for example, in a classical text [1]. A problem of wave 
propagation in a fluid-loaded sandwich plate, which has several common features 
with the problem for a fluid-loaded Timoshenko plate, is considered in [3-4]. 

ON THE SECOND SPECTRUM OF TIMOSHENKO BEAM THEORY 

 
For definiteness, consider the example from [5], and take the beam of depth 

, Young’s modulus mh 125.0= 2
910210

m
NE ⋅= , density 37850

m
kg

=ρ , Poisson 

ratio 3.0=ν  and unit thickness consistent with plane stress conditions. Furthermore, 

select the shear coefficient 
6
5

=κ . In order to facilitate discussion of results from [5] 

and their interpretation, the dispersion curves in Figure 1 are presented in the 
following manner: the wave number is non-dimensional, it is hkk d= , whereas the 
frequency is dimensional, it is measured in rad/s (the dimensional scaling factor  to 

transform abscissas in Figure 1 to the non-dimensional form 

Sf

c
hω

≡Ω  equals 

rad
sf S 6.41377

1
= ). The propagating waves are characterized by purely imaginary 

wave numbers.    

50000 100000 150000 200000 250000
Ω

2

4

6

8

10

kmI

 
Figure 1. Dispersion curves for an infinitely long layer 

 
The dispersion curve predicted by Bernoulli-Euler theory has only one branch, which 
is plotted as a dashed line. Its cut-on frequency is 01, =Ω −oncut . Timoshenko theory 
predicts two branches, shown in Figure 1 by thin lines. The theory of elasticity 
predicts infinitely many branches. In Figure 1, the first three are plotted by dots. The 
cut-on frequencies of the second and the third ones are found to be 

s
rad

oncut 806172, =Ω − and 
s

rad
oncut 2418523, =Ω − . As is well known the tangent to a 

dispersion curve at its cut-on frequency is vertical so that the third brunch in Figure 1 
does not ‘hit’ the coordinate axis. As is seen, the picture is well described by 
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Miklowitz, see [2]. The Bernoulli-Euler theory fails, when the frequency approaches 
the cut-on of the second branch and the Timoshenko theory becomes inaccurate, 
when the frequency parameter approaches the cut-on of the third branch.  

Exactly as reported in [5], in the case of a very short beam, the difference 
between the eigenfrequencies predicted by Timoshenko theory and elasto-dynamics 
in the lowest branch is negligible whereas the eigenfrequencies predicted by the 
second spectrum of Timoshenko theory are very different from the eigenfrequencies 
found by use of the theory of elasticity, see Figure 2a. However, it is expedient to 
notice that the deviation of the second branch of eigenfrequencies from its counterpart 
predicted by elastodynamics occurs at the frequency range (around the 6th -7th 
eigenfrequency), which is not too far from the third cut-on frequency, see Figure 1. 
The graph in Figure 2a might suggest that the Bernoulli-Euler theory is totally 
irrelevant. However, a closer inspection into deviation of ‘Bernoulli-Euler curve’ 
from the other two reveals that the error of Bernoulli-Euler theory becomes large as 
soon as its error in prediction of the magnitude of the wave number is large. In this 

particular case, it is, roughly speaking, 
s

rad70000≈Ω  (i.e., around ). 

Simultaneously, the large error in eigenfrequencies predicted by Timoshenko theory 

occurs, when a frequency exceeds the value of approximately 

2,oncut−Ω

s
rad200000≈Ω  (i.e., 

around ). 3,oncut−Ω
(a) 
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Figure 2. Eigenfrequencies of vibrations of a simply supported layer of the length  
 (a)  (b)mL 5.0= mL 25.1=  (c) mL 75.3=  

 
If a longer beam is considered, mhL 25.110 == , the eigenfrequencies set up a 
somewhat different pattern, see Figure 2b. Timoshenko second spectrum fits very 



N. Author1, N. Author2, and N. Author3 

well the second branch of curve predicted by elastodynamics as long as the 
eigenfrequency is sufficiently far from the third cut-on, approximately up to the 18th 

eigenfrequency (which, naturally, lies around 
s

rad200000≈Ω ). Simultaneously, 

Bernoulli-Euler theory becomes reliable up to approximately 5th-7th eigenfrequency 

of the beam, which agrees very well with the previous estimation of 
s

rad70000≈Ω . 

Moreover, as a long beam is considered, mhL 75.330 ==  (see Figure 2c), the second 
Timoshenko spectrum becomes fairly accurate for the whole considered range of 
eigenfrequencies (from the first to the 30th) belonging to the second spectrum 
predicted by elasto-dynamics and the curve which displays them asymptotically 
matches the curve predicted by elasto-dynamics as 0→Ω .  The same tendency is 
clearly seen for the Bernoulli-Euler model – in this case, some 12-15 
eigenfrequencies are predicted more or less adequately and there is the asymptotic 
matching of all three curves as .  0→Ω

The physical explanation of a failure of the Timoshenko theory to predict 
eigenfrequencies of the second spectrum of flexural vibrations of an elastic layer as 
their magnitudes approach the third cut-on frequency, is the same as the explanation 
of a failure of the Bernoulli-Euler theory to predict eigenfrequencies of the first 
spectrum of flexural vibrations of an elastic layer as their magnitudes approach the 
second cut-on. The formation of a standing wave in a beam is controlled by the 
interaction between direct and scattered waves at the boundaries. In the particular 
case of a simply supported structure, the evanescent waves are not involved in this 
process and the shape of a standing wave is purely sinusoidal in the axial direction. 
Eigenmodes in the first spectrum are generated dominantly due to the interaction of 
the travelling waves characterized by wave numbers predicted by the first branch of 
dispersion curve. An agreement between these wave numbers, in effect, determines 
the agreement between eigenfrequencies in the first spectra of Timoshenko or 
Bernoulli-Euler theory with the exact solution. The same holds true regarding the 
second Timoshenko spectrum.     

WAVE PROPAGATION IN A PLATE UNDER HEAVY FLUID 
LOADING. THE ROLE OF COMPRESSIBILITY 

The discussion of validity of Timoshenko and Bernoulli-Euler beam theories becomes 
particularly relevant, when a surface loading is concerned. Such a case is provided 
when wave propagation in a plate lying at the surface of a semi-infinite volume of an 
acoustic medium is considered. In other words, a plate is located in the plane  
and an acoustic medium occupies the volume 

0=y
0<y . For simplicity (which, however, 

does not undermine the generality of results), consider the case of cylindrical bending 
of a plate, so that its displacement is independent upon one of coordinates. Then one 

obtains the dispersion equation, which reads as ( ( )
E

h222
2
1

1 ρων−
=Ω , ) hkk dim=
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In the case of Kirchhoff theory, it is reduced to  
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Consider a limit case of an incompressible fluid and introduce the small parameter 

ρ
ρ

ε fl= . Then the wave number of a propagating wave in a Kirchhoff plate ( ) 

is found from the equation of the fifths order  

kik ˆ=

012ˆ12ˆ 2
1

2
1

5 =Ω−Ω− εkk          (3) 
The simple asymptotic formula for this wave number is  
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12ˆ
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It suggests that in the limit of an incompressible fluid the wave number is very 
slightly affected by the presence of a fluid. Similarly, the asymptotic formula for 
wave numbers of propagating waves in a Timoshenko plate reads ( ) kik ˆ=
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Figure 3. Dispersion curves (a) and kIm δ (b) for a plate loaded by water 

considered as an incompressible fluid 
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In Figure 3, the branches of Timoshenko dispersion curve  are shown by thick 
lines, the dispersion curve for a Kirhhoff plate is shown by thin line in the case of 
loading by water, 

kIm

128.0=ε . The pattern of these curves differs very slightly from 
those shown in Figure 2. The decay rate into the fluid is characterized by the 

parameter 
2

2ˆ
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−≡

flc
hk ωδ . Apparently, in the case of an incompressible fluid, 

 as is seen from comparison of Figures 3a and 3b. To sum up these results, one 
may conclude that the presence of an incompressible fluid does not strongly affect the 
wave propagation in a plate and the validity range of Kirchhoff theory is the same as 
in the case of vibrations in vacuum. However, the situation becomes totally different 
as soon as the compressibility is taken into account. 

k̂=δ

  
 (a)       (b) 

0.5 1 1.5 2 2.5 3
Ω1

2

4

6

8

10

kmI

0.5 1 1.5 2 2.5 3
Ω1

0.1

0.2

0.3

0.4

0.5

0.6

δ

 
Figure 4. Dispersion curves (a) and kIm δ (b) for a plate loaded by water 

considered as an acoustic medium 
 
In Figure 4a, the dispersion curves predicted by Timoshenko plate theory and by 
Kirchhoff plate theory are presented, then a sound speed in water is taken as 

s
mc fl 1440= , which gives 307.0=

p

fl

c
c

, ( )21 νρ −
=

Ec p . The second branch of 

Timoshenko dispersion curve has disappeared and the difference between predictions 
of two theories can hardly be noticed (it might be visible only around ). 
In effect, the curves are undistinguishable from each other. The parameter 

4.03.01 −=Ω
δ  is 

shown in Figure 4b. There is also a relatively small difference between predictions of 
these two theories. These results suggest that the presence of an unbounded volume of 
the acoustic medium smears out almost completely the difference between 
Timoshenko and Kirchhoff theories, in other words, that the validity range of 
Kirchhoff theory is dramatically extended due to the interaction between an acoustic 
medium and a plate.  

This phenomenon has a simple physical interpretation. The presence of an 
acoustic medium, especially, at high frequencies, makes the rate of decay into fluid’s 
volume of a wave trapped at the surface of a plate very small, see Figure 4b. 
Therefore, a volume of fluid involved in the wave propagation along the surface of a 



ICSV13, July 2-6, 2006, Vienna, Austria 

plate is much larger when the compressibility is taken into account, than when it is 
ignored. Apparently, the behaviour of a fluid is the same regardless whether the 
Timoshenko or Kirchhoff plate model is used. Thus, the characteristics of a trapped 
wave propagating along the plate are determined to larger extend by the properties of 
a compressible fluid, than by properties of a plate. In the case of an uncompressible 
fluid, its motion is induced in a relatively thin layer near plate’s surface (see Figure 
3b) and the difference between two plate’s models is more visible. This result is 
rather generic and may be extended to analysis of wave propagation in cylindrical 
shells or any other structures submerged in water. 

The disappearance of the second wave has the same explanation as the 
disappearance of the second wave in a sandwich plate, see [3]. Indeed, the cut-on 
frequency of this wave is independent upon fluid loading parameter, it is  

( )νκ −=Ω − 161
oncut .          

The velocity potential field introduced by this wave must decay at infinity, . 
Therefore, the following condition must be held 
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The threshold magnitude of wave number is therefore 11 Ω=
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and this frequency parameter must satisfy the dispersion equation (2). Then the 
threshold frequency becomes 
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The admissible regime of shear wave propagation is formulated as . In the 

case of an incompressible fluid, 

11 Ω≤Ω S

0=
fl

p

c
c

 and . However, if , then 

this condition cannot be fulfilled and free propagation of the ‘second Timoshenko 
wave’ is impossible. Exactly the same situation is reported in [3] regarding 
propagation of the shear wave in a sandwich plate.   

oncutS −Ω=Ω 11 pfl cc <

Strictly speaking, this condition is apparently held for a plate vibrating in air 
and the dominantly shear wave cannot propagate in such a case. However, it should 
be observed that all analysis of vibrations of a plate and of an elastic layer has been 
conducted under an assumption of the total absence of any energy dissipation in the 
material. Once the internal damping is taken into account, then a propagating wave 
should be rather referred to as ‘almost propagating’ with its rate of decay controlled 
by the internal damping. Although such a generalisation of results reported here does 
not present any difficulties, it lies beyond the scope of this paper. The energy 
dissipation due to the acoustical emission in the case of wave propagation in water is 
competitive with the internal energy dissipation in the plate’s material, but in the case 
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of loading by air it is negligible. Therefore, discussion of the effect of suppression of 
shear wave propagation in a plate due to the energy emission into air does not seem to 
be practical.  

CONCLUSIONS 

The results reported in this paper are summarized as follows: 
1. The second spectrum of eigenfrequencies predicted by Timoshenko theory is in a 
very reasonable agreement with the exact solution of the problem in elasto-dynamics 
as long as their magnitudes are ‘sufficiently’ lower than the third cut-on frequency 
predicted by solution of the problem of propagation of skew-symmetric waves in an 
elastic layer. The ‘sufficiency’ is naturally determined by the chosen tolerance level. 
2. The wave propagation in a plate under heavy fluid loading is strongly influenced 
by fluid’s compressibility. In particular, propagation of the shear wave predicted by 
Timoshenko theory is suppressed due to this effect. 
3. The validity range of Kirchhoff plate theory is substantially extended due to heavy 
fluid loading effects produced by an unbounded volume of an acoustic medium in 
comparison with its validity range for time-harmonic behaviour of a plate in vacuum. 
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