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Abstract 
The Combined Helmholtz Integral Equation – Fourier series Formulation (CHIEFF) is based 
on representation of a velocity potential in terms of Fourier series and finding the Fourier 
coefficients of this expansion. The solution could be substantially simplified if the Green 
function and its normal derivative are represented by Fourier series. Unfortunately the direct 
expansion of the Green function and its normal derivative are impossible because these 
functions do not satisfy the Dirichlet’s theorem due to the singularities. To take advantage of 
the Fourier methods it is necessary to reformulate the original Helmholtz integral equation so 
that the modified Green function does not contain any singularities. The corresponding 
revision of the problem is proposed in the present paper. The Green function is modified so to 
satisfy the Dirichlet’s theorem. The tradeoff is that the original Helmholtz integral equation 
contains new double singular integrals which could be calculated numerically by an adaptive 
procedure or by means of quadrature formulae. Fourier coefficients of the modified Green 
functions are calculated using a discrete Fourier transform, in particular case by FFT. Using 
orthogonality of the sine and cosine functions the original problem is reduced to an 
overdetermined system of linear algebraic equations to obtain the unknown coefficients of the 
Fourier series expansion. The CHIEFF method is applicable to a broad range of acoustical 
problems of radiation and scattering. It is especially effective for calculation of near acoustic 
fields of large-scale structures. 

INTRODUCTION  

Combined Helmholtz integral equation formulation is often used in boundary element 
methods for description of the effects of radiation and scattering of physical fields, for 
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example, acoustical fields. This method has a substantial advantage over the 
“domain” methods, such as finite element methods, due to reduction of three 
dimensional problems to two dimensions. In his paper Seybert [1] described the 
method of integral equations for solution of radiation and scattering problems for 
axisymmetric bodies and boundary conditions. Further Soenarko [2] generalized this 
method to the problems with axisymmetric bodies and arbitrary boundary conditions. 
Present paper considers a general case of arbitrary body, which could be uniquely 
characterized by a system of two parameters, with arbitrary boundary conditions. 
After formulation of idea of the method the algorithm is formulated and numerical 
example of a plane acoustic wave scattering by a cylindrical body with spherical end 
caps is considered. 

IDEA OF THE METHOD 

Helmholtz integral equation for the radiation-scattering steady-state acoustic field 
could be written as follows: 
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where ( )PΦ - velocity potential of the acoustic field at point P ; ( )QΦ - velocity 

potential of the acoustic field at point Q  supposing that this point  belongs to the 

surface area ( )A ; ( ) ( )i PΨ - velocity potential of an incident acoustic field at point P ; 

( )nV Q - normal component of linear velocity of the surface ( )A  at point Q ; 
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- normal outer derivative of the Green 

function; ( )C P - coefficient, depending on location of point P , which is equal to 4π , 
if P is in outer space of the surface; 0, if P is inside the surface. In general case  
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This expression equals to 2π for a smooth surface. 
 The main idea of our method is that we change the Green function and its 
normal derivative in a small vicinity of point P  and hence, eliminate their 
singularities, for example, suppose these functions are equal to zero. The modified 
functions satisfy the Dirichlet’s theorem and could be expanded in Fourier series. 
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Residual parts of integral expressions in (1) are approximately estimated in the 
vicinity of point P . Following this method we rewrite equation (1) as follows: 
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where ( )�,g P Q - modified Green function, which is equal to ( ),g P Q  for all points 

Q outside a small area A∆ , surrounding point P , and 0 at Q A∈ ∆ ; 
( )�,
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- 

modified normal derivative of Green function, which is equal to 
( ),

Q

g P Q

n

∂
∂

 for all 

points Q outside a small area A∆ , surrounding point P , and 0 at Q A∈ ∆ . 
Equation (3) could be rewritten as follows: 
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where (see (2)) 
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In the case of a radiation–scattering problem with a prescribed value of normal 

projection of surface velocity ( ( )nV Q ) equation (4) is: 
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where the expression in braces could be considered as known function. 

It is recommended to calculate the integrals 
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HELMHOLTZ INTEGRAL EQUATION FORMULATION IN 
SPHERICAL COORDINATES 

 
Suppose that our surface is so that it is possible to make a one-to-one 

correspondence between the surface points and the spherical angular coordinates 
( ),θ ϕ , i.e. that a radius vector exists ( ),r r θ ϕ= , which realizes the isomorphism 

between points of the surface ( )A  and coordinates ( ),θ ϕ . In this case calculations of 

surface integrals in (5)-(6) could be carry out by 
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where ( )cos , ,Q Q Qr nθ ϕ 
  

����������� ���
 - cosine of an angle between the radius vector ( ),Q Qr θ ϕ

�����������

, 

drawn from the centre of the spherical coordinates till point Q  on the surface ( )A  and 

the outer normal Qn
���

drawn to the surface ( )A  at point Q .  

Let us seek a solution in the form of a truncated Fourier series: 
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In expression (16) 2 1M N⋅ ⋅ +  coefficients 0, ,mn mna a b , ( )1,2, , ; 1,2, ,m M n N= =… …  are 
unknown and does not depend on a particular point P . To find them we will use the 
orthogonality of Fourier series. To do this we have to expand  
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in Fourier series, where ( )� ( )�, , , ,P P Q Qg g P Qθ ϕ θ ϕ = . The main difficulty is that both 

( )1 ,Q Qf θ ϕ  and ( )2 ,Q Qf θ ϕ  are defined on the interval [ ]0,Qθ π∈  and we need to 

redefine it on the interval [ )0,2Qθ π∈ . We implement this by means of even reflection 

of the interval [ ]0,Qθ π∈  with respect to Qθ π= as follows: 
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Now the functions ( )1 ,Q QF θ ϕ  and ( )2 ,Q QF θ ϕ  are defined in the domain 

( ) [ ) [ ), 0,2 0,2Q Qθ ϕ π π∈ ×  and it is possible to expand them into the Fourier series (using 

evenness of the functions with respect to Qθ π= ): 
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where ( ) ( ) ( )0 , , , , ,P P mn P P mn P Pc c dθ ϕ θ ϕ θ ϕ  and ( ) ( ) ( )0 , , , , ,P P mn P P mn P Pf f hθ ϕ θ ϕ θ ϕ , 

( )1 11,2, , ; 1,2, ,m M M n N N= > = >… …  could be obtained by a discrete Fourier transform 

for every particular point P . In the case 1 1
1 12 , 2m nM N= = , where 1 1,m n - integers, the 

algorithms of fast Fourier transformations could be implemented.  
Let us redefine the surface velocity ( )nV Q in a similar way and expand it into the 

Fourier series: 
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Now equation (6) could be rewritten as follows: 
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and ( ) ( ),P PC C Pθ ϕ =  is known from the geometry of the structure (see (2)). 
Explicit representation of the Green function in spherical coordinates is 
i keg

ρ

ρ
−

= , where  
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The explicit form of the normal derivative of the Green function is 
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Substituting (8), (11) - (12) in (13) and using orthogonality of sin - and cos – 
functions wee obtain the following linear algebraic equation with unknowns 0a , mna  
and mnb : 
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(18) 
Changing point P, a new equation could be obtained, etc. It is recommended to 
randomize location of points P on the surface of the structure so to obtain 2 1M N⋅ ⋅ +  
or more equations and solve them by means of a least squares method. 
 
 It is necessary to stress that for all continuous surfaces normal derivative 
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discontinuous in general case or the so-called functions of finite variation. So the 

singularity in 
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 is situated only due to the second term (g ) in (16). Let us show 
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the example of the discontinuity of 1
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. We consider a circular cylinder of 

radius r  with axis Oz. Suppose that point P is located on cross-section of axis 
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� . In Figure 1 the graph 

of this function is shown in ( ),r z - coordinates. The function is discontinuous in the 

point ( )0,0 . 

 

DRN  
 

Figure  1- Discontinuity of Normal Derivative of Green Function 

EXAMPLE  

Let us consider pressure distributions of a plane incident wave in the vicinity of a 
cylinder with hemispherical end caps (Fig 2). Axis of the structure is supposed to be 
horizontal. Radius of the cylinder and hemispheres 3a = m and distance between the 
spherical poles is 54h = m. Incident angle equal of plane incident wave is 30α = deg. 
Frequency of incident wave is 500f = Hz. Horizontal axis – θ - angle of the structure 

[ ]( )0,θ π∈ , vertical axis – polar angle of the structure [ ]( )0,2ϕ π∈ . Left pictures show 

the pressure distribution in the presence of the structure. Right pictures show the 
pressure distribution in the acoustic field in the absence of the structure. Comparison 
of these pictures helps to estimate the level of the acoustic field scattering by the 
structure. Colour pictures are accompanied by the digital maps (black and white 
figures). All figures are given in the linear normalized scale. 
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ΦP Φp   

ΦP Φp  
Figure  2 – Pressure distribution in the absence of scattered structure(right) and in 

the presence of the structure (left) and their digital maps 

CONCLUSIONS 

The method of solution of the Helmholtz integral equation is formulated, which is 
based on representation of a velocity potential in terms of Fourier series and finding 
the Fourier coefficients of this expansion. The Green function is modified so to 
satisfy the Dirichlet’s theorem. Fourier coefficients of the modified Green functions 
are calculated using a discrete Fourier transform, in particular case by a fast Fourier 
transformation. Using orthogonality of the sine and cosine functions the original 
problem is reduced to an overdetermined system of linear algebraic equations to 
obtain the unknown coefficients of the Fourier series expansion. This method is 
applicable to a broad range of acoustical problems of radiation and scattering. It can 
be easily parallelized and realized on grid or vector computers. The example of 
calculation of near acoustic fields of large-scale structures is given. 
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