ICSV13 - Vienna

The Thirteenth International Congress
oh Sound and Vibration

Vienna, Austria, July 2-6, 2006
/\-rp\\/\\"m

A COMBINED HELMHOLTZ INTEGRAL EQUATION —
FOURIER SERIES FORMULATION OF ACOUSTACAL RADIATION
AND SCATERING PROBLEMS

Igor Fedotov', Michael Shatald/

! Department of Mathematical Technology, P.B.X68@&t&%ia 0001, FIN-40014
Tshwane University of Technology, South Africa SerScience and Technology (SST) of
2 CSIR Material Science and Manufacturing, P.O. B8%, 3Pretoria 0001,
CSIR, South Africa and
Department of Mathematical Technology, P.B.X68@té1ia 0001 FIN-40014, Tshwane
University of Technology, South Africa.
mshatlov@csir.co.za

Abstract

The Combined Helmholtz Integral Equation — Fousieries Formulation (CHIEFF) is based
on representation of a velocity potential in terofig-ourier series and finding the Fourier
coefficients of this expansion. The solution cobkl substantially simplified if the Green

function and its normal derivative are represeigdrourier series. Unfortunately the direct
expansion of the Green function and its normal vd¢itie are impossible because these
functions do not satisfy the Dirichlet’s theoremedo the singularities. To take advantage of
the Fourier methods it is necessary to reformutageoriginal Helmholtz integral equation so

that the modified Green function does not contaiy a&ingularities. The corresponding

revision of the problem is proposed in the prepapier. The Green function is modified so to
satisfy the Dirichlet's theorem. The tradeoff istthhe original Helmholtz integral equation

contains new double singular integrals which cdagccalculated numerically by an adaptive
procedure or by means of quadrature formulae. Epwoefficients of the modified Green

functions are calculated using a discrete Fourarsform, in particular case by FFT. Using
orthogonality of the sine and cosine functions tirgginal problem is reduced to an

overdetermined system of linear algebraic equatiombtain the unknown coefficients of the

Fourier series expansion. The CHIEFF method isiegiple to a broad range of acoustical
problems of radiation and scattering. It is esgbceffective for calculation of near acoustic

fields of large-scale structures.

INTRODUCTION

Combined Helmholtz integral equation formulatioroften used in boundary element
methods for description of the effects of radiatml scattering of physical fields, for
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example, acoustical fields. This method has a aubat advantage over the
“‘domain” methods, such as finite element methodse do reduction of three
dimensional problems to two dimensions. In his papeybert!! described the

method of integral equations for solution of raidiatand scattering problems for
axisymmetric bodies and boundary conditions. FurBmenarkd® generalized this

method to the problems with axisymmetric bodies aruitrary boundary conditions.
Present paper considers a general case of arbliaty, which could be uniquely
characterized by a system of two parameters, withitrary boundary conditions.

After formulation of idea of the method the algonit is formulated and numerical
example of a plane acoustic wave scattering byliadrical body with spherical end
caps is considered.

IDEA OF THE METHOD

Helmholtz integral equation for the radiation-segttg steady-state acoustic field
could be written as follows:

c(P)®(P)= | °9(P.Q)

1 ong @(Q+ o R QOy( Q| daarwl)( b 1)

where ®(P)- velocity potential of the acoustic field at poirt; ®(Q)- velocity
potential of the acoustic field at poigt supposing that this point belongs to the
surface aredA); w'(p)- velocity potential of an incident acoustic fiedtlpoint P ;

V,(Q)- normal component of linear velocity of the suegfafA) at point Q;

-ik p(P,Q)
g(P. Q):ep(TQ)- Green function of the problenk=%/ - wave number;p(P,Q)-

. : a g(P, L
distance between points and Q; M— normal outer derivative of the Green
Mo

function; c(P)- coefficient, depending on location of point which is equal toir,
if P is in outer space of the surface; (Riis inside the surface. In general case

_ 9 1
C(P)_4”+(A)E{p(P, Q)} dA (2)

This expression equals trfor a smooth surface.

The main idea of our method is that we changeGheen function and its
normal derivative in a small vicinity of poinP and hence, eliminate their
singularities, for example, suppose these functamesequal to zero. The modified
functions satisfy the Dirichlet's theorem and colblel expanded in Fourier series.
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Residual parts of integral expressions in (1) gppr@ximately estimated in the
vicinity of point P . Following this method we rewrite equation (1)@fows:

clp)(9)- {29 Din(q) o qou( 9| snars( -

= I{@@(QHWW(Q} dpr 3)

o(p)o] O o u(1AD] o9 do oy

where g(P,Q)- modified Green function, which is equal tgP,Q) for all points

29(P.Q _
ang

Qoutside a small areaA, surrounding pointP, and 0 atQOAA;

modified normal derivative of Green function, whighequal to%ﬂi’@ for all

points Q outside a small areaa, surrounding poinP, and 0 atQ OAA.
Equation (3) could be rewritten as follows:

c(F@(p)= J{%ﬁ’%(wmw( 9

da ¥ P]j PR @ aarwt( )
(4)

where (see (2))

ST\ eans [0 | 1 _99(PQ
c(P)=4m (j) l:(P,Q)}dA(.[ daA (5)

AanQp AA) 0y

In the case of a radiation—scattering problem wigirescribed value of normal
projection of surface velocity((Q)) equation (4) is:

S 2 9(P.Q) i
c(P)m(P)= j%(noQ) dm{j R QOy( @ da ):m[ @ PR (@ )asrmwl)( )}v
(A)
(6)
where the expression in braces could be consideréadown function.
It is recommended to calculate the integrals

| 29(PQ) d(aA), [ g(P.Q) d(aAnumerically using the adaptive algorithm.
(a9 (an)
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HELMHOLTZ INTEGRAL EQUATION FORMULATION IN
SPHERICAL COORDINATES

Suppose that our surface is so that it is possiblenake a one-to-one
correspondence between the surface points andpiherisal angular coordinates
(6,¢4), i.e. that a radius vector exists=r(6,¢), which realizes the isomorphism

between points of the surfa¢a) and coordinate$s, ¢) . In this case calculations of
surface integrals in (5)-(6) could be carry out by

[ w(6y.00)dA= | ]TLP(HQ,;bQ)D {rz((%’%)%} 3in6, d8,de 7)
00 r

(A) co HQ ,¢Q) Ng

where cos[r(eQ ¢Q);ﬁ} - cosine of an angle between the radius vec(@é,gz)Q),

drawn from the centre of the spherical coordingtegoint Q on the surfac¢A) and
the outer normah,, drawn to the surfacga) at pointQ.
Let us seek a solution in the form of a truncatedrfer series:

©(6.9) =20+ > ayncos{mp) + by, st 1) | Icof ) ®)

n=1nF1

In expression (16pM N +1 coefficients ay, a,,, by, » (M=12...,M;n=12,.. N) are

unknown and does not depend on a particular ppinto find them we will use the
orthogonality of Fourier series. To do this we havexpand

o ol dnute) (28
Mo cogr(a #) o)

. 2(g,.
(o (0r 9. c) = oo o \2fe)_
cos{r(eQ o) HQ}

(65, #p.09.80) = sing, and

C5ind

in Fourier series, Wherm:m. The main difficulty is that both
f,(6.80) and f,(6,.4,) are defined on the intervad, 0[0,7] and we need to

redefine it on the intervafi, 0[0,277) . We implement this by means of even reflection
of the interval@, 0[0,7] with respect tag, = was follows:
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(65 #p.80.80). if 65010,
Fl(ep,¢P,9QY¢Q):£ 1( b\ Pp Q¢Q) if 8o0[0.7] o
2] 1,(271- 65 0. 216 #0) . i BD(, 1)
and
t,(65.0p.00.80). if 8o0[0,
F2(9P1¢P:9Q,¢Q):l 2( b, Pp Q¢Q) if 8g [ IT] 10
2 | 1, (2785 8. 2104 Bo) . if Oo0(mr,20)

Now the functions F,(6,.4,) and F,(6,¢,) are defined in the domain
(6. #o) D[0.27)x[ 0,27) and it is possible to expand them into the Foseates (using
evenness of the functions with respect{c r):

N, M,

Fl(Bp,¢p,6'Q,¢Q)=CO(P)+HZ:1mZ::1[cmn(9P,¢ A cos(mb 3+ do(6 op ) sh( g Mljco(s g }2,
F (65 #0.60.80) = fO(P)+§;%[ Fon(6 s ) cO B + N0 o6 § sifmp J|Ocokw ) (11)

where ¢, (6b.8p), Crn(0p@r) dndFpg ) AN f3(6p8p), Frn(pdr) Nl O nd o
(m=12,...M,>M;n=12,.. N> N) could be obtained by a discrete Fourier transform
for every particular poinP . In the casem, =2™,N, = 2%, wherem, n- integers, the

algorithms of fast Fourier transformations couldrbplemented.
Let us redefine the surface velocity(Q) in a similar way and expand it into the

Fourier series:

Vi (Q) =

N |-

E{ Vo (6 0). if Bo0[0.7] v, +§%[V&?COS(H¢Q)+V‘§3 sir(me)}EICO(} @

V, (2-64.8) . i 8o0(m,27) =]

(12)
Now equation (6) could be rewritten as follows:

27 21

C(6r.00)®(80.00)= [ [ | F(6o#r 00 J(008 J+ (60 o6 of JV [0 o8 ] 8 it |

o +DP Go+D0 r2(3Q7¢Q) .
WVo(Bpte)0 [ [ 9(0p8p808q0 (30 o d6 o dg g+ 4rw() (6 .9 )
bo-0d Gp-NO cos{r (HQ ,¢Q) nQ}

(13)
where

Pp+0P Gp+00 2
C(6p.95) = C(6p.8p) - f - 59(9p1¢p:‘9ov¢o)m (608 )

$ing, d6, d¢
. Q Y¥Q Q
bo—Dp Gp-16 0Ny cos[r(HQ ,¢Q) nQ}

(14)
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andC(6,.¢,) =C(P) is known from the geometry of the structure (S8 (
Explicit representation of the Green function inhepcal coordinates is

g=¢"" /,» Where

p:\/rz(%,cﬁo)”z(ep,%)‘zm(QQ'%)E(QP’¢ A codcof o+ siflg sbip b ¢ ||
(15)

The explicit form of the normal derivative of theg@n function is

g_nizg_piﬂ]g(‘:_% —|k[§gﬁco PQ) er} gE{%Dco%(P—q —6}} (16)

Substituting (8), (11) - (12) in (13) and using hmgonality ofsin - and cos —
functions wee obtain the following linear algebraguation with unknowns,, a,,,
andb,,,:

Po(P Dawgﬂg[nm P Oy * G HOBy= (17)
where
Po(P)=C(P)-47°g;

Pon(P) = C( P)oos{ ) cof 1) - 7
Gnn( P) = C( P)sin( n@,,) co{ ;) - 722 d,;

((P)= n2{4f() o(P)+ ZZ[ (PDA(B+ o AV ‘ﬂ}}

n=1m=1
Go+Dp o +00 r (Q) _
(PO [ | ofPQB—r—L—-ing, &, dg+ a0 ( .
soasamo o codr(Q) ;]

(18)
Changing pointP, a new equation could be obtained, etc. It is menended to
randomize location of point8 on the surface of the structure so to obtaik N +1
or more equations and solve them by means of adgaares method.

It is necessary to stress that for all continugusfaces normal derivative
apmpg 0 and products laa—p and gBa—’o are finite at P - Q but
p 0ng 0N
dlscontlnuous in general case or the so-calledtiomg of finite variation. So the

singularity in gnz is situated only due to the second terg) (n (16). Let us show
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the example of the discontinuity {%Bg—nz]. We consider a circular cylinder of

radius r with axis Oz. Suppose that poinPis located on cross-section of axis
oxand the cylindrical surface so that its coordinaes[r,0,q' . Point Q is also

located on the cylindrical surface with coordinat[—m:osqﬁ I sing z]T. Hence,

||,a||=\/4rzsin2[%]+zz. The vector of outer unit normal at poinQ is

2rBin2[¢j
1op_10p_

pong [ ong _4r2|];in2(¢j+zz
2

fi, =[rcosp.r sing , § and . In Figure 1the graph

of this function is shown ir{r,z)- coordinates. The function is discontinuous in the
point (0,0).

DRN

Figure 1- Discontinuity of Normal Derivative of &n Function

EXAMPLE

Let us consider pressure distributions of a plareédent wave in the vicinity of a
cylinder with hemispherical end caps (Fig 2). Aafsthe structure is supposed to be
horizontal. Radius of the cylinder and hemispheresm and distance between the
spherical poles isi=54m. Incident angle equal of plane incident waveris3odeg
Frequency of incident wave is=500Hz. Horizontal axis -9- angle of the structure

(#0[0.7]), vertical axis — polar angle of the structyigen[o, 277]) . Left pictures show

the pressure distribution in the presence of thecsire. Right pictures show the
pressure distribution in the acoustic field in #iisence of the structure. Comparison
of these pictures helps to estimate the level ef dboustic field scattering by the
structure. Colour pictures are accompanied by tiggatl maps (black and white
figures). All figures are given in the linear noidimed scale.
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Figure 2 — Pressure distribution in the absencsazttered structure(right) and in
the presence of the structure (left) and theirtdignaps

CONCLUSIONS

The method of solution of the Helmholtz integraliation is formulated, which is
based on representation of a velocity potentiageims of Fourier series and finding
the Fourier coefficients of this expansion. The érdunction is modified so to
satisfy the Dirichlet’'s theorem. Fourier coefficigrof the modified Green functions
are calculated using a discrete Fourier transfannparticular case by a fast Fourier
transformation. Using orthogonality of the sine ambine functions the original
problem is reduced to an overdetermined systemnefl algebraic equations to
obtain the unknown coefficients of the Fourier egrexpansion. This method is
applicable to a broad range of acoustical problefmadiation and scattering. It can
be easily parallelized and realized on grid or eecomputers. The example of
calculation of near acoustic fields of large-sctectures is given.
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