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Abstract

The generating equations of the problem are coreidén terms of a system of three
dimensional equations of linear elasticity consdein the spherical coordinates. It is known
that in this case the exact solution of the probtemld be obtained in the spherical Bessel,
associate Legendre and trigonometric functions. Sgireerical coordinates are introduced so
that a constant vector of the inertial angular pateses through the pole of the coordinates. It
is supposed that the angular rate of the inert&dtion is much smaller than a minimal
circular frequency of elastic vibrations of theusture and hence, it is possible to neglect the
centrifugal forces. It is shown that the elasticzesof the structure are partially involved into
rotation (precession) with respect to the inedfzce with scale factors depending on nature
of elastic modes and their numbers. Correspondiates factors, or Bryan's factors of the
vibrating mode’s precession are calculated dependimnature of the modes, spheroidal or
torsional and their numbers. Bryan's factors ofiateti spherical body are calculated and
compared with corresponding factors of a free body.

INTRODUCTION: STATEMENT OF THE PROBLEM

Let us consider an isotropic and elastic solid sphere of radisgFig. 1). It is
supposed that the sphere is surrounded by an acoustic medium, whidie w
considered as an ideal non-viscous fluid. Suppose that the splseitgested to an
inertial rotation with small constant angular raeoinciding with axisOz. Terms,

proportional to the square a@ will be neglected, i.e. it is supposed tIGE(tQZ) =0.
We introduce the following systems of coordinates:
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Oxyz— rotates in an inertial reference frame with the sphboeitOz- axis with

angular rateQ ;
Ox Y, z- rotated ovelOxyzat angleg - over Oz;

Ox, Y, - rotated ovelOx y; zat angleg- overoy, .
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Figure 1 — Coordinate systems for spherical body

GENERATING SOLUTION FOR A NON-ROTATING SPHERE

Generating equations of motion of motion of the spherical badyo() ard’:
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where the stresses:
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Oy =4 (Err tEgo tEpy ) +208, ; Ogp = A (‘?r Tt Epy ) +2Uegg ;

U¢¢:/‘(5rr+599+£¢¢)+2ﬂ5¢¢§ Gg=H&g, Gy =H&y: Ogp = Hegy (2)

and strains are:

1., . _1 1 .
Er SW; & :?(U9+W)v 5¢¢—r—(c°t9w+sin9‘é+"‘a’

1 1 1 1 1 ®)
Eo=U +=(-Uu+tWwW); 4=y +=|~vr—— W |; &y =—] —— Y —cotdOw
o r( W) &p=Y r( sin@ J % r[sin@g yj
By means of change of variablgsv,w) - (o,¥,X):
, v 20 A L1 1,1 1,
W:(Dr"'r[E(er +?er_D2X:|; U:{Xr +F(¢+X)L+asin9w¢; V:% Xr+F(¢+X)}¢_gW€
4
2 2 2 . . .
where 2= 9,20 10" ,coWdo , 1 0" _ |gplacian in the spherical
ar? ror r?96% r? 00 r?sin’gog’
coordinates, the variables are separated:
(A+2u)MPe=pd; pMW=pP;, u?X=pX (5)

2
Considering a steady-state proc%% ~iw ST R —aﬁj the solutions of equations

(5) for the case of a solid sphere could be represented as a sum-o$pherical
harmonics:

Pon(r.6,0) = Apnd oKy ) P (cosd) Ocogmg)
X (1, 6,8) =B o(kor )P (cosd) Ocogmp) (6)
Won(r.0,8) =D o0 o(kor ) P T (cost) Osi(mg)

where the wave numberal:kl(w):a/cl; k2:k2(“’):%2 and ¢ = (/‘+2ﬂ%;

c, = /% - speeds of extensional and inextensional waves propagation.

Due to absence of radial and tangential stresses on the spherfaak ( =a)
the boundary conditions are:

[a—rr]r:a :[a—re]rrva:[a—r¢:|r-a:0 (7)

It is possible to show that could be satisfied for two diffeneatles of vibration:
» Spheroidal modes:
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, K(w)_ 2 2 : Caex)
{l}prr— 2£ )Gm@‘|+FEEk22(w)[qrxr+x)+(rxf+x) rr:|} =0

k2 r=a (8)
w
E qg'r_i'@p + Xp +}D(r' + L__l X =0
r r r 2 r2
r=a
* Torsional modes:

vt

After solution of the characteristic equations (8) — (9) wendekigenvaluesy.
Substituting them into (6) and (4) the eigenfunctiong=uU ,,,(r.6), Vi =Vau(1.6).
W, = W, 1,6) are obtained.

PRECESSING WAVES IN VIBRATING AND ROTATING SPHERE

Angular rateQ in projections orox,y, » (Fig-1) isG =[-Qsiné 0 Qcog] . Radius-

vector of a deflected poitin projections on these axeés[u v r+w] . According
to the Euler’s formula, the absolute linear velocity of p&int

u-Qvcosd
F+Qxr =|V+Q[ucosd+(r +w) sing | (10)

W-Qvsing

<l
1
=l
+

Suppose that a solution of the equations of motion is obtainelgefomt—mode
as follows:

U = U (1, 8) TIC o t) cosmp + S, () sinng |
Vinn = Vi r,H)EﬁSmn( fjcosngp - C{ } sin "ﬂ (11)
Wenn = Wi 1,60) 0 C o ) cosmp + S } sin i |

where C.,(t), S.(9)- time dependent functionsy,,,(r.8),Vi(r.8) W, (r.6) -
eigenfunctions.

Kinetic energy of the solid sphere (for the sake of brevé&yomit mn- indices):
ngzj”ﬁ"\?"Z r?sing drdo dp=T(C. 5 G $=% Jif &+ Yoo, es' ¢ (12)
000

where the term@(gz) are neglected and
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mTa

lo = [[U?(r,0)+v 2(r,6)+W (r,6) | *(sinddr d 0
°,i; 13)

1, =200 [[(U(r.6) o +W (r ) Tsird) ¥ (r §) |m° Osigdrd 6

Substituting (11) in (2)-(3) we obtain the following expressiomfuential energy:

l 2mmra
P(C.9 =5 [ [[(0n&r +Taobao+ Tugtpp + ok 0+ 48 4 + Optig) T sm¢9drd¢9d¢——l2(Cz+Sz)
000
(14)
where o, , &,, ... — see (2)-(3), and, =1,(m,n). The Lagrangian of thenn-

vibrating pattern is:

L=L(¢.5c9=1C'scl Pc)s OEQZG 2bro0,f ‘es )cé (12c?)  (15)

Equations of motion are:

{?‘2”9.5”’20:0 (16)
S+2QC+a?S=0
whereo? =@, 2 = '%) . The Bryan'’s factor; =, is’®":

n=t (17)

It is simply to prove thabs|y|<1. Furthermore, it is possible to prove thatis an

geometric invariant (it does not depend on radius of the sphes as well as mass
and stiffness invariant (it does not does not depend on mass denaitg modulus

of elasticity E of the elastic material). The Bryan’s factor dependPaisson’s ratio
v (see example).

Let us consider the effect of the skew-symmetric gyroscdpices
-27Q¢, 27Q$ on dynamics of vibrating pattéth We multiply the second equation

(16) byi (i2 = —1) , add with the first equation and introducing a new complex variable
Z=C+iS ( iz =-S+iC ) obtain the following equation:

Z+2inQZ+afZ=0 (18)

Let us change variablg - Y: z(t)=Y({)2", where a =const will be defined later.
In this case Z=(V+iaY)d"; "z:("Y+2 o Y-a° ymiét. Substituting these
expressions in equation (16) we obtain:
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Y'+2i(a+/79)\'(+(w2—aZ—ZaUQ)Y:0 (19)

It is obvious that termy could be eliminated if we choose=-7Q. In this case
W -a?-2anQ=w’+n%?=w? because we neglect terms(Qz). In this case
equation (19) is simplified to the equation of a harmonic oswmilldt+ «”Y=0. It
means that using the transformatia(x) = v(t)c'** we fix the vibrating pattern in
the reference frame, which rotates with angular tate-7Q relative to the rotating
reference frameoxyz. In the immovable reference frameépcwe observe the
vibrating pattern rotation with angular rage=(1-7)Q.

Hence, we defined a new object, the so-cafleztessing waveThe effect of
precession is defined by the abovementioned gyroscopic forces, pyopbtb the
first power of inertial angular rate . It is necessary to stress that the Bryan’s factor
n =n., substantially depends on particutan —eigenfunctions.

ROTATING AND VIBRATING SPHERE IN ACOUSTICAL MEDIUM

Due to presence of a surrounding acoustical medium the boundary @osditi
(7) are rewritten as follows:

(o] #[ P ] =0 [l [W"] =00 [op]w=[0]i==0  (20)

The first expression means the equality of radial stresteofsphere to the
external pressure in the acoustical medium and the second —tyediafiadial
displacements of the sphere and the medium=at. mn- component of pressure in

the acoustic medium i@ (kr) = j, (kr) -i ¥, (kr) - Hankel spherical functiorg™ -
speed of sound in the acoustical medium)

P = Po(7.0,0.6) = H)( &/ v PR (cos)| P, cogmp) + 2, sifirg)].  Radial
(m)
displacement of the medium g™ = p%(m)wz). Tangential components of the
o,

stress are zero because the medium'’s viscosity isctegl

CALCULATION OF EIGENVALUES AND BRYAN'’S FACTORS

Let us consider an example of a sphere of radit®.5m made from an aluminium
alloy with modulus of elasticitye = 710° ’\%nz, Poisson’s ratiorv =0.33 and mass
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density p=2.7010 kg 5. Calculated real values of eigenvaluesHn of spheroidal
m

modes are given in the Table - 1 for the cases of free autiece and acoustically
loaded surface fon=2,m=2;

medium are: sound speedcl™ =1500m/ and mass density o' =1000k%3.
Corresponding values of the Bryan'’s factors of the spheroidal moglessa given in

n=3,m= 2; = 3,nr & Parameters of the acoustic

the Table - 1.
Table — 1. Eigenvalues and corresponding Bryan’s factors
Eigenvalues | Bryan’s factor| Eigenvalues | Bryan's factor

m=2 (free boundary, (free (Re, acoustic (acoustic
Hz) boundary) | medium Hz) medium)
n=2 2633 0.921 2567 0.969
5056 0.137 5050 0.403
8563 0.300 6616 0.333

8190 0.350
10848 0.270 9728 0.329
n=3 3924 0.515 2296 0.608
6654 0.127 5660 0.175

6654 0.174
9910 0.136 7252 0.173

8824 0.182

Eigenvalues | Bryan’s factor| Eigenvalues | Bryan'’s factor

m=3 (free boundary, (free (Re, acoustic (acoustic
Hz) boundary) | medium Hz) medium)
n=3 3924 0.634 2296 0.708
6654 0.000 5660 0.149

6654 0.151
9910 0.073 7252 0.103

8824 0.110

It follows from this Table that the precessing waves of gteeidal modes
move in the direction opposite to the inertial rotation (in th&ting coordinate
system) and substantially
eigenvalues. Furthermore, Bryan's factors of the acoustitadlyed spheres are
higher than the corresponding Bryan'’s factors of unloaded spheresxdple, in

rely on

radius-dependence of the cordasgpo

the casen=2,m= 2 for eigenvaluef =5056Hzof the unloaded sphere the value of
Bryan's factor isng =0.137; the corresponding eigenvalue of the acoustically loaded

sphere is f® =5050Hz with Bryan's factor 7® =0.403. Eigenfunctions,
corresponding to these eigenvalues are shown in Figure — 2.
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Eigenfunctions of Free Sphere Eigenfunctions of Radiated Sphere

Wa
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Figure 2 — Eigenvalues, corresponding to m=2, n=2, f=5056 Hz.

Bryan'’s factors of the torsional modes do not rely on radius dependétiteir
eigenfunctions and depend exclusively on valuesnah— wavenumbers. In the
rotating coordinate system they move in the direction theiaheotation and do not
interact with an external acoustical medium.

CONCLUSIONS

1. Expression for Bryan’s factor was derived, which charactetize coefficients
of proportionality between angular rate of precession of a vibrptittgrn and
the inertial angular rate of the spherical isotropic eldsidy;

2. It was pointed out that the Bryan’s factor is an invariant of ig¥headius, its
mass density and modulus of elasticity; it depends on Poigsaiv's

3. It was found that in the case of spheroidal oscillationsBity@n’s factor of
radiated body is higher than the value of these factor for free dfaithe same
mode; torsional oscillations do not interact with an ideal non-viscoogstc
medium.

4. In the rotating coordinate system the spheroidal vibrating paieecsss in the
direction, which is opposite to the direction of inertial rotaipositive Bryan’'s
factor); the torsional patterns precess in the direction oftiahemtation
(negative Bryan's factor).
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