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Abstract 
The effect of model parameter variability on the low-frequency vibro-acoustic 
response of structures is discussed, and a statistical approach, based on first-order 
variance analysis presented for stochastic optimization. The modal correction method 
(a fast re-analysis, in which the effects of structural modifications are estimated by 
adjustment and re-solution of the modal equations) is reviewed in the context of 
uncertainty analysis. Subsequently, the accuracy of predicted response statistics is 
established for a representative structure by comparison with Monte Carlo simulation. 

INTRODUCTION 

The properties of real structures differ in service from nominal design conditions, as a 
result of normal variations in manufacture and the influence of environmental factors 
[1][2].  These variations can have a marked impact on the NVH response of both 
automobile and aerospace structures [3][4]. Low frequency vibro-acoustic prediction 
is usually performed using finite element models in which the properties are assumed 
known with certainty. However many properties are not deterministic but vary 
randomly. For example, nominally identical vehicle bodies and engine mounts can 
exhibit large variations from specification values owing to the effects of 
manufacturing tolerances and scatter in polymer properties. This can result in 
significant scatter in the NVH response of nominally identical vehicles, making 
design decisions difficult when based entirely on deterministic analysis [5]. In the car 
industry, there is current interest in statistical NVH analysis methods that account for 
the potential scatter in actual responses. In this paper we outline such an approach. 
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RELIABILITY-BASED NVH PREDICTION 

Methods for predicting the effects of model parameter uncertainty on structural 
response belong to the theory of structural reliability. The general term “failure” is 
used to describe a condition in which the response exceeds some limit. In the context 
of vehicle NVH analysis the limit condition could for example, be the maximum 
allowable acoustic FRF response in decibels (at driver ear position) for some 
specified engine excitation frequency. Commonly used reliability methods include 
first-order reliability (FORM), Monte Carlo simulation, and second-order reliability 
(SORM) [2][5]. The response mean and variance may also be directly approximated 
by a Taylor series [7]. By considering the first-order terms only, an approximation to 
the actual mean and variance of response can be obtained as follows: 
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The simplification obtained by equations (1) and (2) avoids the often prohibitively 
expensive calculation of higher derivatives. In frequency response analysis the 
response and derivatives are complex quantities. It has been established that for low 
parameter variance, the first-order sensitivity method, denoted here as FOSM, can 
give excellent results. Note that it is assumed here that the mean response is 
unchanged by the presence of variability. FOSM forms the basis of an approach to 
optimization discussed later in the paper. 

FAST RE-ANALYSIS USING MODAL CORRECTION 

The modal correction method (MCM) is an approximation performed at the level of 
modal equations. It belongs to the general class of basis-vector re-analysis methods 
and leads to a reduction in the computational effort for repeated dynamic response 
analyses as required in sensitivity and optimization calculations or Monte Carlo 
simulation. The original system eigenvectors are used to calculate a modification to 
the matrices in the modal equation of motion. The modified structural stiffness 
corresponding to the N  variables is: 

                                                    Ks = Ks + Φs
T∆ksiΦs

i=1

N

∑                                                (3)                      

Analogous modifications to the modal mass and damping are performed. Physical 
modifications lead to a final modal equation of motion [4] as follows: 
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A random variable can represent a group of finite elements with the same property. 
For each variable, correction matrices are calculated once, and then scaled in an 
element-dependent manner. Physical responses are recovered from the modal 
solutions. But engineering accuracy is only achieved if the number of basis 
eigenvectors is sufficient.  

AN APPROACH TO STOCHASTIC OPTIMIZATION  

Stochastic optimization involves the search for robust solutions to problems with 
random variables [6]. The approach described here uses equation (2) (FOSM)  to 
approximate the response variance. Maximum likely frequency response amplitudes 
are then derived by adding some probable deviation to the mean response. The mean 
values of the model parameters and the variance of each parameter (expressed as a 
standard deviation or coefficient of variance) can be defined as independent design 
variables for the purposes of optimization. Reflecting the relationship with product 
quality, COV variables are termed “quality variables”. The optimization problem can 
then be posed in the form of an objective function in which we wish to minimize: 

                                                            F = f ( X ,COVx )                                 (5) 

subject to inequalities: 
  
U ≤Umax , Xlower ≤ X ≤ Xupper , COVX lower ≤ COVX ≤ COVX upper . 

Using equations (2) and (3), and assuming a Gaussian response distribution, we have 
at probability level p: 
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where 
  
Z( p) = Φ−1 p( ).  When quality variables are defined, it is useful to assign a 

“cost” penalty to low variance. Optimization that includes a cost penalty for variance 
model parameters, makes possible optimum selection of both mean and coefficient of 
variance of model parameters, and may provide new economic solutions to NVH 
problems. To illustrate the stochastic optimization capability, Figure 1 has been taken 
from reference [3]. This figure, generated at the end of optimization, shows that the 
upper bound of response has been reduced to the target response. In this example, the 
“cost” was also reduced. The final values of the mean and quality variables 
demonstrate that a cost-optimal NVH design solution may require that the quality of 
response-critical components be improved while being lowered elsewhere. 
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Figure 1.  Frequency response functions obtained via stochastic optimization 

The validity of the above procedure depends on the FOSM approximation for 
variance, the assumption that the mean response is independent of variance in the 
parameters and the accuracy of the modal correction method. The interest in the 
accuracy of MCM and FOSM motivates the numerical experiments described in the 
next section.  

A NUMERICAL CASE STUDY OF THE EFFECTS OF VARIABILTY 

Figure 2 shows a finite element (FE) model of a stiffened-steel box structure (2m x 
1.5m x 1m) enclosing an air cavity and resting on spring mounts. The structural FE 
model has around 150000 degrees of freedom (DOF). The box comprises 2mm thick 
plate components that are connecting by spot and seam welds. This structure exhibits 
many of the dynamic characteristics of a car body enclosing a passenger compartment 
air cavity. Unit harmonic forcing (of magnitude 1 Newton) is applied at a point on the 
base. The frequency response of some 30 structural DOF and 2 internal air pressures 
is calculated in 1 Hz steps across the frequency range 10-150 Hz. These calculations 
were performed in fluid-structure modal frequency response analysis in NASTRAN. 
Structural modes up to 350Hz (554 modes for nominal design) and 87 fluid modes up 
to 600 Hz were used in forming the modal equations. A modal damping value of 2% 
was used for both structure and fluid. (To save calculation time, the physical coupling 
matrix was calculated once and read from an external file during subsequent 
calculations). In addition, approximate calculations were carried out using MCM and 
FOSM in the program CDH/VAO.  

Monte Carlo analyses - A total of 42 uncertain plate thicknesses were defined as 
uncorrelated random variables. Gaussian distributions respectively with 2.5% 
coefficient of variance, 5% COV and 10% COV were used. A uniform distribution 
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with variance corresponding to 5% COV was also used. For each of the 4 levels of 
variability, 2000 sets of realizations were generated. Thus in total, 8000 NASTRAN 
runs were performed. Computations were performed on HP Itanium, IBM Power 5, 
and NEC Itanium servers, taking approximately 2500 CPU hours in total.  

 

Figure 2.  Stiffened-steel box model for comparison of Monte Carlo  
simulations and FOSM 

 
Approximate MCM and FOSM analyses - For all distributions, a FOSM calculation 
of variance was performed. An approximate Monte Carlo analysis was carried out 
using MCM in CDH/VAO for 150 realizations of the 5% COV distribution.  
 

Summary of Results - Figure 3 shows good-fit distributions of box mass and, as an 
indicator of stiffness, the number of modes below 350Hz generated from results of 
the Monte Carlo analysis. Figure 4 presents the range over all analyses and mean 
response amplitude of a selected acoustic response. Figure 5 shows the actual mean 
and the nominal response. In Figure 6 the standard deviation, calculated for Monte 
Carlo analysis, is presented together with the standard deviation calculated in FOSM. 
Figure 7 shows the MCM results calculated for 5% COV in CDH/VAO. The results 
show that: i) in the presence of variability in the model parameters, large deviations 
from nominal responses may result; ii) the variability in the response increases 
nonlinearly with variability in the input parameters; iii) with increasing parameter 
variability the mean response calculated in Monte Carlo smoothens and can markedly 
differ from nominal response; iv) variance calculated in the FOSM approximation is 
valid only for low levels of variability in the input parameters; and v) the results for 
Gaussian and uniform distributions with the same variance are practically identical. 
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Figure 3.  Probability distributions of mass and roots below 350Hz 

 

 

Figure 4.  Bounds for Monte Carlo-derived acoustic responses,   
also showing corresponding mean values. 
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Figure 5. Monte Carlo-derived and nominal mean values 

 

 
 

Figure 6. Monte Carlo-derived and FOSM standard deviations 



L.W. Dunne and J.F. Dunne 

 
 

Figure 7.  FRF’s and phase responses for approximate Monte Carlo using MCM 

CONCLUSIONS 

With reference to low frequency acoustic analysis, this paper discussed the effects of 
FE model parameter uncertainty. An approach to stochastic optimization based on a 
first-order estimate of variance is discussed. The modal correction method, a fast re-
analysis method, has been reviewed in the context of uncertainty analysis. The 
accuracy of MCM and FOSM has been assessed by comparison with Monte Carlo 
analysis. FOSM based stochastic optimization is shown to be valid only for very low 
parameter variability. 
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