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Abstract 
The acoustic field in a closed cylindrical shell of finite length with a regular orthogonal 
system of stiffeners (stringers and frames) which models the propeller aircraft fuselage 
section is investigated. An analytical model accounting for frame discreteness and for their 
elasto-inertial properties is examined. The stringers in this case are “smeared”. The eigen-
frequency density corresponding to this analytical model has its maxima not only in the 
vicinity of the ring frequency, but also in the vicinity of the frequencies characteristic of 
regular structures. Shell excitation by the aero-acoustic field of propeller and the sound field 
formation in the shell are described with account for the effects of a elasto-acoustic 
interaction between its oscillations and the sound-transmitting layers, the ambience and the 
medium in the limited volume. The analysis of the acoustic field inside aircraft within the 
limits of this analytical model permitted determining the conditions at which the framed shell 
of the fuselage can be treated as orthotropic one and the conditions at which the frame 
discreteness and their elasto-inertial properties, are to be taken into account. 

INTRODUCTION 

The noise inside propeller aircraft is determined in many respects by elasto-inertial 
properties of the framed fuselage shell. To predict the noise at low frequencies 
corresponding to the blade passage frequency of the propeller and to its lower 
harmonics, a structurally orthotropic model of the shell can be used [1,2]. However 
the orthotropic shell model works well only in the cases and at the frequencies at 
which its long-wave modes dominate the short-wave ones in the process of the sound 
field excitation and formation. As the prediction frequency, stiffener rigidity or the 
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requirements to prediction accuracy increase, more precise models accounting for the 
stiffener discreteness and, primarily the frames discreteness, are to be used.  
 The shell with discrete frames was considered in works [3,4] where the lowest 
modes received primary attention. The present work considers a shell model 
accounting for frames discreteness and their elasto-inertial properties and with 
stringers are "smeared". In other words, a milti-span closed cylindrical shell 
consisting of orthotropic spans and supported by mobile frames is considered. The 
task related to excitation of the shell, the sound-insulation structure layers, the closed 
volume and the surroundings is solved in this case as a coupled elasto-acoustic one. 
There is an analytical solution for such a model and it is obtained and presented in 
this work. The similar task was solved by the authors [5] for a shell with motionless 
frames. 

PREDICTION RELATIONS 

Consider a thin closed cylindrical shell of L  in length and of R  in radius free 
supported at butt-ends and stiffened by a regular system of stiffeners (stringers and 
frames).  

 

  
a) Coordinate directions b) Force directions 

Figure 1 –  Scheme of stiffened shell, coordinate and force directions. 
 
The shell consists of N identical orthotropic spans of d in length and the stringers are 
"smeared". The equation for such span vibrations can be described by the matrix 
expression: 
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Here all the coordinates and displacements are related to radius R  and their 
directions are shown in figure 1a). The following specifications are used: h,,E, ρµ   
are the Poisson coefficient, Young's module, density, shell thickness; 

ssssss z,J,I,A,d,ρ   are the stringer density, their placement step, cross-section area, 
momentum, turning momentum, eccentricity (positive for the internal location ); wq  
is the overall normal action force; Ringω  is the ring frequency.  

The frame vibrations can be described by the following expressions 
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Here rrrr z,I,A,ρ  are the frame density, cross-section area, its momentum, 
eccentricity (positive for the internal location); S is the cutting-off force, T is the 
tangential force directed as shown in figure 1b). We neglect in eq. (1,2) all the inertial 
terms except the radial (although it is right only for 4>n  [4]) and the terms of the 

22 R/h  order.  
The solution for the finite shell is obtained from the solution for the infinite one, 

leaving the frame "halves" on the shell butt-ends. The span eigen-functions for the 
harmonic oscillations of the infinite shell are sought in the form of expansion in terms 
of functions: 

 

}.,{s,
)/syncos(
)/synsin(V
)/syncos(U

)xexp(W
w
v
u

j

j

jj 10
2
2
2

=
�
�
�

�

�

�
�
�

�

�

+
+
+

=
��
�

�

�

��
�

�

�

π
π
π

λ                   (3) 

  
Here and below the time factor )tiexp( ω  is omitted. The substitution of functions (3) 

into the left-side part of (1) permits detecting eight wave numbers ( 81,..,i,i =λ ) for 
any frequency. The radial displacements in the running wave can be expressed as a 
sum of  
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The frame vibrations are presented as follows: 
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The substitution of (5) into (2) gives the following expression: 
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The eigen-functions for the wave running over the infinite shell with discrete 

frames have the repeatability property ( )dx(fe)x(f i −= α ). It means that the eigen-
functions of the adjacent spans differ only in the phase step. This phase step is 
constant and determined by the longitudinal mode index m ( N/mπα = ) and this 
corresponds to the condition of node generation on the shell butt-ends in the case of 
two contrary wave superposition. 

In two span joints three conditions of continuity are realized as well as the 
condition of equality of angle inclinations. With account for the phase step constancy, 
they all are expressed as follows: 
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The ring is subjected to the forces at the left side (l) and at the right side (r) 
(figure 1b): 
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Add up the left forces and the right forces of the opposite direction: 
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Write down the conditions of continuity on the frame of longitudinal tension and 
momentum as follows 
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Combine relations (6,7,9,10) into a unified resolving matrix relation, on the basis of 
which eigen-frequences and coefficients jW  are found: 
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The complex conjunction of the oscillation form of the wave running along the 
span *f1  makes the form of the wave running to meet it and this explains the 

symmetry of function )/d(f/)xd(f)/d(f/)x(f ** 22 111111 −= relative to the span 
middle. Making use of this symmetry property, one can write down an expression for 
eigen-functions of the N-spanned shell as follows 
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The sound field inside the shell can be presented in the form of an expansion: 
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Where nJ  is Bessel function, )xkcos( mm ′′ =χ  for acoustically rigid butt-ends and 

)xksin( mm ′′ =χ  for acoustically soft ones. To solve the associated task related to the 
interior sound field with account for the interaction with sound insulation layers and 
the ambience, we use the relations from work [5]. Eventually we shall get a 
connection between the sound pressure amplitudes in the shell smnP ′  and the 
generalized forces nmsQ  of the external field: 
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Here mnmC ′  are the coefficients of the expansion of longitudinal components of 
acoustical modes in terms of elastic modes with account for the shell mass non-
uniformity, aR , acρ  are the acoustic volume radius and density, cyl

nmZ  is the modal 
impedance of the shell with account for the ambience response. 

The efficiency of reducing the sound level by a board structure can be 
characterized through the ratio of the pressure squared of the exciting field at the 
point of its intensity maximum to the sound pressure square averaged over the 
volume: 

( ))(p)(q10lg)(NR 22
max ωωω =                              (15) 
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INVESTIGATION RESULTS 

For test calculations the parameters of models corresponding to the parameters of 
light aircraft were chosen. The shell length is 45.L = m; radius is 21.R = m; step of 
arrangement of frames is 450.d = m. The sound insulation structure consisted of a 
trim panel (2.5kg/m2), an air gap (0.03m) and an insulating layer (0.07m). The shell 
butt-ends were assumed to be acoustically soft. The shell was excited by the field 
described by the function: 

 

( ))(/yi)(/y)(/)xx(expq)y,x(q yiyxmax ωπωω Λ−Λ−Λ−−= 2222
0 .    (16) 

 

       
a) n=6, m=2, 396Hz b) n=9, m=3, 504Hz c) n=6,m=13, 605Hz d) n=1 e) n=6 f) n=10 

Figure 2 – Examples of the eigen- functions of shell. 
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Figure 3 – Eigen-frequencies for a 6-spanned shell. 
 

Figures 2(a,b,c) present examples of the form of vibration of 12-spanned shell 
(at the bottom) and of the respective form of the running wave in the complex plane 
(at the top). Note, that it directly follows from the phase step constancy in the running 
wave that the longitudinal component of the shell eigen-functions, similarly to any 
other regular system, can be expanded into a series as follows: 
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Figures 2(d,e,f) present longitudinal shell eigen-functions for the first group at 
different values of circumferential index n. At small values of indices m and n eigen-
functions are slightly different from the sinusoidal ones. As the indices increase, the 
form of modes becomes more distorted. As the index n increases, the frame rigidity 
increases and their vibrations attenuate, in comparison with the span vibrations.  

Figure 3 presents the eigen-frequencies calculated for a 6-spanned shell. For 
comparison the prediction results obtained with the use of the orthotropic model are 
given. The frequencies for each index n are broken up into groups with N modes in 
each one, thus manifesting stop-band and pass-band behavior. At a certain value of 
the circumferential index n = nx1 the frequencies thicken, similarly to frequency 
thickening close to the ring frequency at n=0,1, when the value of longitudinal index 
m has practically no effect on the eigen-frequency. This frequency thickening is 
associated with a transfer from the modes with positive dependency of the eigen-
frequency on m to the modes with motionless frames with negative dependency. A 
similar interaction at some certain its own n is observed for each group of modes.  

 
Figure 4 – Dependency of NR on frames rigidity. 1 – initial frames, 2,4,8 – enlarged 

frames in 2,4,8 times, Ort. – orthotropic model for initial frames . 
 

   
a) initial frames b) twice c) 4 times 

Figure 5 – Influence of frames rigidity on the shell deformation. f = 250 Hz, x0 = 2m. 
a) initial frames b) frames with twice profile enlargement c) 4 times. 

Figure 4 presents a NR-variation for the shells with different frames rigidity due 
to enlargement of their Z-like profile length in 2,4,8 times. It is seen that the NR 
enlargement is high only in a certain frequency range. The frames rigidity 
enlargement results in the decrease of the lower margin of this range. Figure 5 
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presents the shell oscillation deformation for three types of frames with account for 
the interactions with the insulation layers, the ambience and the medium in the 
limited volume. The shell is excited by the propeller aero-acoustic field at 250 Hz 
(the third harmonic) with the intensity maximum at the distance of 2m from the edge.  

On the basis of this investigations carried out the boundaries of the structurally 
orthotropic model application were determined. They can be determined without 
resorting to a discrete model. The orthotropic model can be applied in the following 
cases: 1) if the frame response is small i.e. the frequency difference obtained 
according to the orthotropic model for the shell with frames and without them is 
small; 2) if the frame response is large, but several spans are accommodated on the 
longitudinal wave length ( 3/Nm < ) and the circumferential index value is less than 
the value, at which the frequency thickening of the first group takes place (n<nx1). 
The index of thickening nx1 can be approximately determined as the index value, at 
which the frequency of a separate freely supported span is equal to the frequency of 
the whole shell with m=1 obtained according to the orthotropic model. 

This model with discrete frames is valid only on condition that the stringers can 
be "smeared", i.e. if the circumferential index is not large ( sd/Rn 3π< ) and if the 
stringers are compliant enough, that is when the isolated shell cell frequency exceeds 
the frequencies obtained when they are "smeared"  

SUMMARY 

The exact analytical solution for predicting the sound field inside the shell is obtained 
for a model of the closed cylindrical orthotropic shell with discrete rings. It is found 
that the resonant frequency thickening can be revealed in the case of account for the 
frame discreteness and they can lead to a considerable sound level increase in the 
shell. The field of application of the model with discrete frames is indicated. The 
simple method of orthotropic model correctness limitations is proposed.  
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