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Abstract 
In this paper, the linear vibrations of thermally prestressed beams are studied, including the 
prebending effects. General equations governing structural vibrations superimposed on an 
initial static state are first given. They are applied to a planar Euler-Bernoulli beam under the 
assumption of small prestrain and large predisplacement. Initial imperfections are included in 
the whole analysis. The governing equilibrium equations are solved using a finite element 
method. This model is then validated through experiments inside a climatic chamber. 

INTRODUCTION 

For thin structures such as beams or plates, the effects of prestress are likely to have a 
significant impact upon the structural dynamical behaviour. On the contrary of fully 
thick structures, this occurs even for relatively low prestress states, far from the 
buckling stage, because of an amplifying factor given by the slender ratio. As far as 
beams are concerned, it is well known that the natural frequencies of flexural 
vibration increase (resp. decrease) when the axial load is tensile (resp. compressive) 
[1]. 

Nevertheless, most of studies found in the litterature deal exclusively with in-
plane prestress effects, whereas prestressed states generally induce some prebending, 
yielding a predeformed geometry. To the author knowledge, the prebending effects 
are hardly studied and often neglected, particularly for low prestress states, so that 
their effects upon vibrations remain obscure. In this paper, the linear vibrations of 
prestressed planar beams including prebending effects are studied. Without loss of 
generality, this paper focus on thermal prestressing, in the context of structural health 
monitoring based on modal diagnosis with thermal compensation [2] and the need of 
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adequate numerical models. A typical application of civil structures is a bridge 
subjected to climatic thermal variations [3]. 

GENERAL EQUATIONS 

In prestressed dynamics, three configurations must be distinguished: the reference 
configuration (undeformed and unprestressed), the predeformed configuration 
(corresponding to the prestress state), and the total configuration (including 
superimposed dynamical deformations). Quantities referring to these configurations 
will respectively be denoted with a subscript ref, a subscript 0 and a tild. The absence 
of symbol will be left for superimposed dynamical quantities. In this paper, the 
reference configuration represents the ideal geometry, without initial imperfections, 
denoted by the subscript i. 

We restrict our study to conservative systems, linear thermoelastic constitutive 
laws, static (or quasi-static) prestress states, and small superimposed vibrations. The 
prestress/predeformation effects are viewed by dynamics through the geometric 
nonlinearities of the prestress state. Mechanically induced heating is neglected, as 
well as thermally induced vibrations. 

Based on a Lagrangian formulation [4], Hamilton’s principle for the total 
configuration is written in terms of the following total kinetic energy, total strain 
energy and external energy: 
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Within the scope of linear thermoelasticity, the stress and strain tensors are 

related through 0: θ= −S � � �� � . In the presence of initial imperfections ui (which are 

supposed to be known), the Green-Lagrange strain tensor must also include some 

imperfection terms, and is written as ( )1 2 T T T T= ∇ +∇ +∇ ∇ +∇ ∇ +∇ ∇i iE u u u u u u u u� � � � � � � . 

Now, the total displacement vector is decomposed as a sum of two components, 
one corresponding to the prestress state, and the other corresponding to small 
superimposed non-stationary perturbations. Applying this decomposition into (1), and 
keeping only quadratic terms in u (for the purpose of linearisation), Hamilton’s 
principle holds for the superimposed dynamic state, with the following energy 
expressions: 
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S is the second Piola-Kirchoff stress increment tensor (S=ΛΛΛΛ:E). E is the linearised 

Green-Lagrange strain increment tensor: ( ) ( )( )12
TT T= ∇ +∇ + ∇ +∇ ∇ +∇ ∇ +∇0 i 0 iE u u u u u u u u . 
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In non-linear mechanics, the formulation (2) is referred to as the total 
Lagrangian formulation, here in its linearised version [5]. In the present study, one 
advantage of such a formulation is that the predeformation effects appear explicitly 
through u0, for more physical insights. 

APPLICATION TO PLANAR BEAMS 

The equations governing the dynamic equilibrium of a planar Euler-Bernoulli beam 
are derived from a total Lagrangian formulation. Small prestrain and large 
predisplacement are assumed. The beam axis, denoted x, is not necessarily a neutral 
axis. The axis corresponding to the direction of transverse diplacements is denoted z. 
In the remaining of this paper, x derivatives will be denoted by (.),x. An isotropic 
material is supposed. Then, the following expressions hold: 
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E and α are respectively the Young’s modulus and the coefficient of thermal 

expansion. Now, it can be shown that the application of Hamilton’s principle (1) 
yields the equilibrium equations, together with the expressions of the axial force, the 
moment and the transverse force resultants: 
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A denotes the cross-sectional area in the reference configuration, and ∂A is its 

contour. The prestress state verifies Eqs. (4) for the static case. The following 
notations have been used: 
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 From (2) and by neglecting the terms of higher order effects, it can be shown 
that the following energies can be obtained for the superimposed dynamic state: 
 



F. Treyssède 

 

( )2 2 2
, ,

0 0 0

, ,

0 0 0 0

2 2 2
, , , , 0 ,

0 0 0 0

, 0,

1 1

2 2

1 1 1
  

2 2 2

         

L L L

m f x mf x

LL L L

ext x z x x z x x

A A A

L L L L

m x f xx x mf xx x

x m x i

T u w dx w dx u w dx

V ut dx wt dx w mdx u T dA w T dA w zT dA

V H u dx H w dx u H w dx N w dx

u H w w

ρ ρ ρ= + + −

 
=− − + − + − 

 

= + − +

+ +

∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

� � � � �

( ) ( ) ( )2 2
, , , 0, , , 0, , ,

0 0 0

1

2

L L L

x x x mf x i x xx m x i x xw dx w H w w w dx H w w w dx













− + + +


∫ ∫ ∫

 (6) 

 
 The application of Hamilton’s principle gives the equilibrium equations for 
prestress dynamics (not shown here for conciseness). It can be verified that they 
exactly correspond to a direct linearisation of Eqs. (4). The incremental strain energy 
V is dependent of two prestress variables: the “classical” axial preload N0, and the 
predisplacement derivative w0,x+wi,x. Hence for dynamics, the predisplacement due to 
prebending must be summed with that due to initial imperfections. 

NUMERICAL METHOD 

The above equations are solved using a FE method. In a conventional manner, a 
linear interpolation is chosen for the axial displacement and the geometry. Hermitian 
interpolation functions are used for approximating the transversal displacement. The 
elements have three degrees of freedom per node associated to u, w, −w,x. 

Prestress State 

The prestress state is obtained by solving the static non-linear system (4), denoted 
K0(U0)U0=F0 after FE discretisation. This system may be efficiently solved with an 
iterative algorithm of Newton-Raphson type [6], by computing successive 
incremental displacement given by: 1 1j jδ− −=TK U R , where KT is the tangential 

stiffness matrix and R is the residue. The superscript j-1 denotes the step number in 
the iterative process. The next step j is given by: 1j j δ−= +0 0U U U . 

Dynamics 

After discretising expressions (6) and assembling, the application of Hamilton’s 
principle yields the algebraic system: + =MU KU F�� , where K and M are symmetric 

matrices. In this paper, we will focus on eigenmodes, given by ( )2ω− =K M U 0 . 

K is dependent on N0 and w0+wi and may be decomposed as a sum of three 
matrices Klin+ Kσσσσ+KL defined, from V in Eqs. (6), as follows. Klin represents the 
small displacement stiffness matrix, usual in linear analysis. Kσσσσ is a matrix, often 
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called the geometric stiffness matrix, dependent on the axial prestress level. KL is a 
matrix due to the presence of predisplacement. The whole matrix K may be not 
definite positive when buckling occurs (but as stated earlier, we are interested in low 
prestress states far from the buckling stage). K may also be directly obtained from the 
prestress state computation because it exactly corresponds to the tangential stiffness 
matrix. 

EXPERIMENTAL SETUP 

The experimental device is depicted in Fig. 1. A vertical test beam is clamped at both 
ends on a workbench made of four vertical thick columns and two horizontal decks. 
This workbench is made of steel, whereas the beam is made of aluminium. The whole 
apparatus is set inside a climatic chamber with controlled ambient temperature. 

Figure 1 – Workbench (left) and instrumented test beam (right) 

Because steel and aluminium do not have the same coefficient of thermal 
expansion (1.17e−5 and 2.30e−5 K−1 respectively), a temperature change will 
naturally induce a significant axial prestress inside the beam. From Eqs. (4), this 
quasi-static prestress N0 is constant along the beam, even though a temperature 
gradient might exist along the beam. 

One considers a beam of length L=1 m and 0.03 m depth. As sketched in Fig.1, 
the beam profile is circular, so that no straight neutral axis exists. The thickness varies 
from 0.03 m at extremities to 0.01 m at center. The cross-section is rectangular. The 
material properties are E=7.24e+10 Pa, ρ=2790 kg/m3. Those characteristics have 
been experimentally checked by comparing theoretical and experimental, free-free 
and clamped-free eigenfrequencies. For a better match with the experimental 
boundary conditions, a torsional spring is used in the model at both ends (with 
stiffness C=3e5 N.m). 

As depicted in Fig. 1, the beam has been instrumented with one accelerometer, 
a pair of aluminium strain gages with thermal compensation and some temperature 
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sensors. Under the assumption of small strain, the gages provide a measurement of 
the compensate strains at the upper (+) and lower (-) sides. With the uniformity of the 
temperature on the beam cross-section (the Biot number is less than 0.1), the 
curvature w0,xx(L/2) and the axial prestress N0 are respectively obtained from the 
difference divided by thickness and the half sum of strains divided by Hm. N0 can thus 
be experimentally obtained without requiring any temperature sensor (and only at one 
measurement point because it remains axially constant). 

Tests are carried out inside the climatic chamber, first by stabilizing the ambient 
temperature for 3 hours, and then heating for 27 hours with a slope of +1°C per hour. 
The beam is acoustically excited by a loudspeaker with a white noise input. Strain 
and temperature measurements are saved every seconds. Acceleration measurements 
are automatically triggered every thirty minutes, for 250 seconds with a 1280Hz 
sampling frequency. Some experimental results are given in Fig.2. They clearly show 
that the first eigenfrequency decreases as the average temperature increases versus 
time, whereas the axial prestress and the curvature decrease. 

Figure 2 – Experimental results vs. time : averaged beam temperature and 1st 
eigenfrequency (left), axial prestress and center curvature (right). 

RESULTS 

Prestress State 

The knowledge of N0 and w0(x)+wi(x) is a crucial step. First, the initial imperfections 
have been measured with an optical displacement sensor and then interpolated on 
each node. Between both ends, a non negligible difference of 5.5 mm was observed. 
The computation of the prestress state would a priori require the knowledge of the 
complete temperature field inside the beam. However, in the test-case considered, 
there is no prebending load (because the temperature is cross-sectionally constant in 
particular), which means that the knowledge of N0 is sufficient to determine the whole 
predeformed state. 
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Figure 3 – experimental (solid line) and computed (dashed line) curvatures at center. 

In the FE model, the boundary conditions are as follows. A zero axial 
predisplacement is enforced at one extremity while the measured axial prestress is 
enforced at the other. At the end, w0 is enforced to zero because the jaws position has 
been carefully adjusted to the imperfect beam in the experiment. Besides, some 
constant angles are taken into account at both ends of the beam, because tightening 
jaws are not perfectly perpendicular (both angles were found from the measurement 
of the predeformed beam in its clamped-clamped configuration). Fig. 3 provides a 
satisfying comparison of the evolutions of experimental and FE curvatures at center 
throughout the test. 

Eigenfrequencies 

In this example, we will exclusively focus on eigenfrequencies because the sensitivity 
of modal shapes with prestress in the FE model was found to be quite negligible. 

Figure 4 – Left: 1st eigenfrequency vs. axial prestress: experimental (x), computed with 
prebending (solid line) and without (dashed line). Right : relative change vs. axial prestress. 

Figure 4 depicts the change in the first eigenfrequency with the axial prestress 
during the test. In the experiment, a decrease from 127.5 Hz to 119.5 Hz is observed. 
The comparison between experimental and numerical results clearly demonstrates the 
influence of prebending: if only the axial prestress is considered in the computation of 
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this eigenfrequency, a significant difference with the experiment is found. The 
relative change in frequency with respect to the reference (corresponding to the 
beginning of the test) decreases to −6% at the end of the experiment, as well as in the 
FE model based on a complete prestress state. Without prebending, the numerical 
results give an erroneous change of about −11%. The evolutions of eigenfrequencies 
of modes 2 and 3 have also been analysed (not shown here for conciseness). The 
mode 2 (resp. 3) varies from 264.7 Hz (resp. 467.8 Hz) to 245.0 Hz (resp. 445.3 Hz), 
yielding a relative change of −7.3% (−4.8%) at the end of the experiment. This 
relative change is in good agreement with the FE model, with or without prebending, 
indicating that these modes are not sensitive to prebending. 

CONCLUSIONS 

From the results above, when the predeformation is neglected, the axial prestress has 
a stronger shifting effect for lower eigenfrequencies. This is coherent with the 
standard results found in the litterature [1]. Nevertheless, this statement might not be 
true anymore in the presence of significant prebending, which tends to reduce the 
shifting effects of axial prestress upon some isolated modes (the first one, in the 
example presented). In practice, neglecting prebending in eigenfrequency 
computations may lead to errors of several percents, even when the predisplacement 
remains relatively small compared to the beam length (less than 0.5% in the 
experiment). 
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