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Abstract

In this paper, the linear vibrations of thermally prestrdds=ams are studied, including the
prebending effects. General equations governing structural igitsasuperimposed on an
initial static state are first given. They are applied fanar Euler-Bernoulli beam under the
assumption of small prestrain and large predisplacemenal limgperfections are included in
the whole analysis. The governing equilibrium equations are cdsalsig a finite element
method. This model is then validated through experiments inside a clitnatiter.

INTRODUCTION

For thin structures such as beams or plates, the effectesifgss are likely to have a
significant impact upon the structural dynamical behaviour. Ondghe&ary of fully
thick structures, this occurs even for relatively low prestréstess far from the
buckling stage, because of an amplifying factor given by #wdst ratio. As far as
beams are concerned, it is well known that the natural freqemndidlexural
vibration increase (resp. decrease) when the axial load itetéresp. compressive)

[1].

Nevertheless, most of studies found in the litterature deal exelyswith in-
plane prestress effects, whereas prestressed statesllgenduze some prebending,
yielding a predeformed geometry. To the author knowledge, the nuheigeeffects
are hardly studied and often neglected, particularly for lowstpees states, so that
their effects upon vibrations remain obscure. In this paper, the Mi@ations of
prestressed planar beams including prebending effects are stfibdut loss of
generality, this paper focus on thermal prestressing, in thextarftstructural health
monitoring based on modal diagnosis with thermal compensation [2] aneéddeof
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adequate numerical models. A typical application of civil strustisea bridge
subjected to climatic thermal variations [3].

GENERAL EQUATIONS

In prestressed dynamics, three configurations must be distinguisteedeference
configuration (undeformed and unprestressed), the predeformed combigurat
(corresponding to the prestress state), and the total configuréticluding
superimposed dynamical deformations). Quantities referring te ttasfigurations
will respectively be denoted with a subscright a subscript O and a tild. The absence
of symbol will be left for superimposed dynamical quantitiesthis paper, the
reference configuration represents the ideal geometry, withoigl imtperfections,
denoted by the subscript

We restrict our study to conservative systems, linear theastae constitutive
laws, static (or quasi-static) prestress states, and sop@kimposed vibrations. The
prestress/predeformation effects are viewed by dynamics girdlne geometric
nonlinearities of the prestress state. Mechanically inducedngegtineglected, as
well as thermally induced vibrations.

Based on a Lagrangian formulation [4], Hamilton’s principle foe total
configuration is written in terms of the following total kireeegnergy, total strain
energy and external energy:
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Within the scope of linear thermoelasticity, the stress arainstensors are
related throughS= A : E -k 6, . In the presence of initial imperfections(which are
supposed to be known), the Green-Lagrange strain tensor must also irarhgle s
imperfection terms, and is written ESJ/Z(D}D #0 MO+ @ o ui).

Now, the total displacement vector is decomposed as a sum of tvpmeents,
one corresponding to the prestress state, and the other correspondimgllito s
superimposed non-stationary perturbations. Applying this decompositiori)neng
keeping only quadratic terms i (for the purpose of linearisation), Hamilton’s

principle holds for the superimposed dynamic state, with the folloveingrgy
expressions:
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S is the second Piola-Kirchoff stress increment tenSeNA(E). E is the linearised
Green-Lagrange strain increment tensEJrJZZ(EHD WOy 0 W+d( y q))
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In non-linear mechanics, the formulation (2) is referred to hes tbtal
Lagrangian formulation, here in its linearised version [5]. Inghesent study, one
advantage of such a formulation is that the predeformation etipgisar explicitly
throughuo, for more physical insights.

APPLICATION TO PLANAR BEAMS

The equations governing the dynamic equilibrium of a planar EulereBtr beam
are derived from a total Lagrangian formulation. Small psestand large
predisplacement are assumed. The beam axis, dexatedot necessarily a neutral
axis. The axis corresponding to the direction of transverse diplatemedenoted.

In the remaining of this papex, derivatives will be denoted by (.)An isotropic
material is supposed. Then, the following expressions hold:

E.=(0-aw) S wirww i 5= §Ea0) ©

E and a are respectively the Young’s modulus and the coefficient ofrthler
expansion. Now, it can be shown that the application of Hamilton’s pren€ipl
yields the equilibrium equations, together with the expressions @ixiaeforce, the
moment and the transverse force resultants:
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A denotes the cross-sectional area in the reference configuatiddA is its
contour. The prestress state verifies Eqs. (4) for the stasie. cThe following
notations have been used:

(HoHH ) =[E(12.2) dA (b0 ) =[] 227 dA
T (5)
izfloreffdi-l-J-l:(ds ' _11' :Ipref fszJ -EdS, _mj.p ref IZdﬁ' xT;

From (2) and by neglecting the terms of higher order efféaten be shown
that the following energies can be obtained for the superimposed dynamic state:
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The application of Hamilton’s principle gives the equilibrium equatifor
prestress dynamics (not shown here for conciseness). It can bBedvérat they
exactly correspond to a direct linearisation of Egs. (4).imbemental strain energy
V is dependent of two prestress variables: the “classicall prgdoadNy, and the
predisplacement derivative, x+w; x. Hence for dynamics, the predisplacement due to
prebending must be summed with that due to initial imperfections.

NUMERICAL METHOD

The above equations are solved using a FE method. In a conventional manner, a
linear interpolation is chosen for the axial displacement and thaeajey. Hermitian
interpolation functions are used for approximating the transversgladement. The
elements have three degrees of freedom per node associated tov .

Prestress State

The prestress state is obtained by solving the static non-lsystem (4), denoted
Ko(Uo)Uo=F after FE discretisation. This system may be efficieatlved with an
iterative algorithm of Newton-Raphson type [6], by computing suoccessi

incremental displacement given by1'6U=R’™, where Kt is the tangential
stiffness matrix andR is the residue. The superscrjgl denotes the step number in
the iterative process. The next siép given by:U) =U" +dU.

Dynamics

After discretising expressions (6) and assembling, the applicafiodamilton’s
principle yields the algebraic systemtU +KU =F, whereK andM are symmetric

matrices. In this paper, we will focus on eigenmodes, givebeysz ) U=0.

K is dependent oMy andwotw; and may be decomposed as a sum of three
matricesK i+ Kg+K_ defined, fromV in Eqgs. (6), as followsK, represents the
small displacement stiffness matrix, usual in linear &K is a matrix, often
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called the geometric stiffness matrix, dependent on the axistrgss levelK_ is a
matrix due to the presence of predisplacement. The whole niatnxay be not
definite positive when buckling occurs (but as stated earlier, aventarested in low
prestress states far from the buckling stalgenay also be directly obtained from the
prestress state computation because it exactly correspondstemgeatial stiffness
matrix.

EXPERIMENTAL SETUP

The experimental device is depicted in Fig. 1. A verticgtl beam is clamped at both
ends on a workbench made of four vertical thick columns and two hotizimdks.
This workbench is made of steel, whereas the beam is made ofhiaioomihe whole
apparatus is set inside a climatic chamber with controlled ambient teéorpera
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Figure 1 — Workbench (left) and instrumented test beam (right)

Because steel and aluminium do not have the same coefficient rofathe
expansion (1.176 and 2.30e5 K™ respectively), a temperature change will
naturally induce a significant axial prestress inside the b&om Eqs. (4), this
guasi-static prestresd, is constant along the beam, even though a temperature
gradient might exist along the beam.

One considers a beam of lengithl m and 0.03 m depth. As sketched in Fig.1,
the beam profile is circular, so that no straight neutral axis exists. Thedls varies
from 0.03 m at extremities to 0.01 m at center. The cross-sestrestangular. The
material properties arE=7.24e+10 Pap=2790 kg/m. Those characteristics have
been experimentally checked by comparing theoretical and exgeal, free-free
and clamped-free eigenfrequencies. For a better match withexperimental
boundary conditions, a torsional spring is used in the model at both entls (wit
stiffnessC=3e5 N.m).

As depicted in Fig. 1, the beam has been instrumented with oeleraeter,

a pair of aluminium strain gages with thermal compensation and sanperature
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sensors. Under the assumption of small strain, the gages providasarement of
the compensate strains at the upper (+) and lower (-) sidésth& uniformity of the
temperature on the beam cross-section (the Biot number is lassOthp the
curvaturewpx(L/2) and the axial prestredd, are respectively obtained from the
difference divided by thickness and the half sum of strains dividét),bi), can thus
be experimentally obtained without requiring any temperature séusionly at one
measurement point because it remains axially constant).

Tests are carried out inside the climatic chamber, first by stisgilthe ambient
temperature for 3 hours, and then heating for 27 hours with a slope oped tour.
The beam is acoustically excited by a loudspeaker with a wwbite input. Strain
and temperature measurements are saved every seconds. aliccel@easurements
are automatically triggered every thirty minutes, for 250 secovitts a 1280Hz
sampling frequency. Some experimental results are given in Fige¥. clearly show
that the first eigenfrequency decreases as the averagerétumpancreases versus
time, whereas the axial prestress and the curvature decrease.

1st eigenfrequency and temperature vs time Axial prestress and curvature vs time
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Figure 2 — Experimental results vs. time : averaged beam temperature and 1st
eigenfrequency (left), axial prestress and center curvature (right).

RESULTS

Prestress State

The knowledge oNy andwy(X)+w;(X) is a crucial step. First, the initial imperfections
have been measured with an optical displacement sensor and thpolateel on
each node. Between both ends, a non negligible difference of 5.5 mobsased.
The computation of the prestress state wauldriori require the knowledge of the
complete temperature field inside the beam. However, in thedsst-considered,
there is no prebending load (because the temperature is crassaBctonstant in
particular), which means that the knowledgégfs sufficient to determine the whole
predeformed state.
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Cunvature at center vs axial prestress
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Figure 3 — experimental (solid line) and computed (dashed line) curvaturestat.ce

In the FE model, the boundary conditions are as follows. A zero axial
predisplacement is enforced at one extremity while the mehswial prestress is
enforced at the other. At the end, is enforced to zero because the jaws position has
been carefully adjusted to the imperfect beam in the experirBeisides, some
constant angles are taken into account at both ends of the beam, ligfdaseg
jaws are not perfectly perpendicular (both angles were found tlilenmeasurement
of the predeformed beam in its clamped-clamped configuration). FHigo\8des a
satisfying comparison of the evolutions of experimental and FE ttmesat center
throughout the test.

Eigenfrequencies

In this example, we will exclusively focus on eigenfrequenciealsecthe sensitivity
of modal shapes with prestress in the FE model was found to be quite negligible.

Eigenfrequency versus axial stress Relative change Af/fref (%)
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Figure 4 — Left: 1st eigenfrequency vs. axial prestress: experimentab(mputed with
prebending (solid line) and without (dashed line). Right : relative change v paastress.
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Figure 4 depicts the change in the first eigenfrequency witltiad prestress
during the test. In the experiment, a decrease from 127.5 Hz to 11$%%0bigerved.
The comparison between experimental and numerical resultsydieanionstrates the
influence of prebending: if only the axial prestress is considered in theutaton of
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this eigenfrequency, a significant difference with the expamimis found. The
relative change in frequency with respect to the refer¢dnogesponding to the
beginning of the test) decreases-6%6 at the end of the experiment, as well as in the
FE model based on a complete prestress state. Without prebending, tecalum
results give an erroneous change of abdiit%. The evolutions of eigenfrequencies
of modes 2 and 3 have also been analysed (not shown here for conisEness
mode 2 (resp. 3) varies from 264.7 Hz (resp. 467.8 Hz) to 245.0 Hz (resp. 445.3 Hz
yielding a relative change of7.3% (4.8%) at the end of the experiment. This
relative change is in good agreement with the FE model, withtbouti prebending,
indicating that these modes are not sensitive to prebending.

CONCLUSIONS

From the results above, when the predeformation is neglected, #hgmesdtress has

a stronger shifting effect for lower eigenfrequencies. Thicdblerent with the
standard results found in the litterature [1]. Nevertheless, #iisnsént might not be
true anymore in the presence of significant prebending, which tendsitice the
shifting effects of axial prestress upon some isolated modedil$heone, in the
example presented). In practice, neglecting prebending in eigenfrgquenc
computations may lead to errors of several percents, even wherethsplacement
remains relatively small compared to the beam length (less @B in the
experiment).
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