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Abstract 
The purpose of this work is to suggest a criterion for the optimal placement of strain sensors 
for monitoring vibrations in flexible structures. More precisely, it is proposed here to find the 
optimal location of strain sensors by maximising the observability of the von Mises 
equivalent strain of the fundamental vibration modes. The sensors should be placed at points 
where this equivalent strain presents significant values for the system dynamic behaviour. 
Experimental validation is provided on a cantilever thin plate instrumented with triaxial 
rosettes of conventional strain gauges and fiber Bragg grating sensors subjected to impact and 
harmonic loading. 

INTRODUCTION 

The research and development of smart structures technology in recent years has 
provided new ways of measuring and cancelling vibrations. A good choice of the 
sensor location on smart structures is essential to measure and cancel efficiently these 
vibrations. The optimal placement of sensors has been addressed by a great number of 
researchers. For instance, Crawley and de Luis [2] attempt to find the optimal 
placement by determining the location of high average strain on structures. Hwang et 
al. [6] find the placement of piezoelectric sensors by determining the position 
sensitivity function of each controlled mode, which is proportional to the sum of the 
deformation in two directions (0º, 90º). Gawronski [3] addresses the problem of 
sensor positioning using their notion of modal controllability and observability. 
Halim and Moheimani [4] propose a method based on the spatial controllability 
measure.  

In this work, we deal with the strain sensor placement problem as applied to 
three-dimensional flexible structures and particularized to plate structures. To this 
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end, we analyse a three-dimensional strain state by using the von Mises equivalent 
strain (ES) [1] corresponding to the vibration modes to be observed and/or controlled. 
It is a unique representative value of a three-dimensional strain state and gives 
information on optimal locations of sensors. The developed method is used to locate 
strain sensors and monitor vibrations in an experimental platform based on a 
cantilever thin plate. In most of the applications, conventional strain gauges and 
piezoelectric sensors are used as strain sensors. However, other types of sensors, like 
Fiber Bragg Grating (FBG) sensors, are increasing their importance in several 
applications, for instance, in structural monitoring for civil, aerospace, marine, and 
other structures [8]. FBG sensors exhibit several advantages with respect to 
conventional sensors, such as electrical and magnetic isolation or non-existence of 
noise measuring. For these reasons, we have also used these sensors in our 
experimental setup.   

This paper continues as follows. A sensor placement criterion based on the von 
Mises ES and its application to locate strain sensors in a cantilever thin plate is 
presented. In the next Section the main features of FBG sensors used as strain sensors 
are expounded. The experimental validation using conventional strain gauges and 
FBG sensors is provided and some conclusions are finally given. 

SENSOR POSITIONING CRITERION 

Our objective is to suggest a criterion for the optimal placement of strain sensors on 
flexible structures. This criterion is based on considering that the ES distributions 
should be large and nearly equal for applications in monitoring and cancelling 
vibrations. As a consequence, this method takes into account the mean and the 
standard deviation of the ES distributions of the considered modes. The optimal 
placement is proposed to be found by the following optimization problem: 
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The procedure is as follows. A modal analysis must be carried out and the 
modal shapes and the corresponding distributions of each component of the strain 
tensor must be derived from this. From the strain distributions, we can calculate the 
ES according to (2) and then the optimization criterion (1) can be carried out.  

In this work, we focus on a cantilever thin plate, which often appears in 
spacecraft applications and it is a typical light damped structure. The low-frequency 
vibrations of this structure decrease very slowly with time. Hence, most control 
applications concentrate on cancelling these low frequencies. Since our problem deals 
with a cantilever plate, it is necessary to measure the strain in three different 
directions at each point of interest [1]. This is the reason why a triaxial rosette is 
needed. There are two possible configuration of a triaxial rosette: a star configuration 
and a triangle configuration. Both configurations are typical for traditional strain 
gauges and the triangle configuration is more common for FBG sensors. Figure 1 
shows a diagram of these two possible configurations. 

 
Figure 1 – Strain rosette sensors. a) Star configuration. b) Triangle configuration 

The measured longitudinal strains at each point, 1ε , 2ε  and 3ε  can be expressed 
in terms of  the components of the strain tensor xε , yε  and xyε  as follows: 
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where lxn , lyn  with 1,2,3l =  are the direction cosines of the axis of each sensor with 
respect to the X-axis. In the case of the triangle configuration shown in Figure 1b), 
the angles with respect to the X-axis are 0º, 90º and 45º. Substituting the 
corresponding direction cosines, (3) can be rearranged and the strain state ( xε , yε , xyε ) 
can be derived.  

From the Kirchhoff’s assumptions of thin plate theory [5], zε , xzε  and yzε  are 
negligible. Then, (2) can be simplified as follows: 
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where ( )2 2,xi iz x y xε φ= ∂ ∂ , ( )2 2,yi iz x y yε φ= ∂ ∂ , ( )2 ,xyi iz x y x yε φ= ∂ ∂ ∂  and 

( ),i x yφ  is the orthonormalized modal shape with respect to mass matrix [9], as it is 
typically considered. 

FIBER BRAGG GRATING STRAIN SENSORS 

Fiber optic sensors are displacing the traditional sensors for acoustic, strain, vibration, 
etc, due to their inherent advantages, like their ability to be lightweight, resistant to 
electromagnetic interference, high sensitivity and environmental ruggedness. The 
sensor is fabricated by “writing” a fiber grating onto the core of an optical fiber [7]. 
Bragg writing technology allows us to couple numerous sensors on a single fiber, 
with no physical splicing. The installation is easy and has a single point connection to 
the optical source as opposed to multiple connections required in traditional sensors.  

The basic principle of operation of FBG sensors is based on the shift 
wavelength of the return signal with the changes in the strain measure. Then, if the 
strain is given by L Lε = ∆ ,  the relationship from the Bragg wavelength ( )Bλ  to its 

shift ( )Bλ∆  can be expressed as [7]: 

 ( )1B B pλ λ ε∆ = −  (5) 

where p  is the effective photoelastic constant and depends on the strain optic sensor. 

EXAMPLE OF APPLICATION 

The example consists of a cantilever thin plate made of aluminium. Figure 2 shows a 
schematic diagram, dimensions and physical characteristics of the plate.  

The differential equation of undamped motion of plates has the form [9]: 
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where ( , , )w x y t  is the transversal deflection of each point of the plate, 4∇  is the 
Biharmonic operator and ( )3 212 1D Eh υ= −  is the plate flexural rigidity. 

Equation (6) has not analytical solution for the cantilever case [9]. Because of 
this, the vibration modes of the plate are obtained using the finite element method. 
The plate has been modeled by 250 shell finite elements [5] and the computation has 
been performed with the finite element code ANSYS [10]. 
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Elastic Modulus E  0.69 11e  2N m  
Mass density ρ  2950  3Kg m  
Poisson’s ratio υ  0.30   
Width xL  0.500  m  
Thickness h  0.003  m  
Length yL  1.2  m   

Figure 2 – Schematic diagram, dimensions and physical characteristics of the plate structure 

Application of the optimization criterion 

We have considered the first three modes which adequately approximate the dynamic 
behaviour of the plate. A modal analysis has been carried out and the modal shapes 
have been derived. Then, the ES distributions of each vibration mode can be obtained. 
As an example, Figure 3a) depicts the first vibration mode and its corresponding ES 
distribution. The clamped edge is placed at 0y = . Note that the first mode presents 
the maximum values of the ES close to the clamped edge as it is expected. Figure 3b) 
shows the cost function ( ( ),x yΨ ) and the placement of the optimal points obtained 
from the proposed method: (x = 0.00, y = 0.10) and (x = 0.50, y = 0.10).  

 
a) (First bending mode,1.66 Hz) 

 
b) 

Figure 3 – a) First vibration mode and the corresponding ES distribution. b) Sensitivity map  
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Experimental validation 

To verify the above results, we have performed a harmonic analysis to obtain the 
frequency response of the system in terms of the ES.  

The applied force at the point (x = 0.40, y = 0.20) is the following: 

 ( ) ( )0 cos 2F t F ftπ=  (7) 

and the response of the structure in terms of the ES is as follows: 

 ( ) ( )0 cos 2vM vMt ftε ε π ϕ= +  (8) 

0F  being the amplitude of the excitation , ( )0,  13f Hz∈  the range of frequency 

variation , t the time, 0
vMε  the amplitude and ϕ  the phase of the response. 

On the other hand, we have carried out several impact analyses by means of an 
instrumented hammer to complete the validation of the obtained location. 

We shall now present some experimental results by using conventional strain 
gauges and FBG sensors. 

Conventional strain gauges 

Several conventional strain rosettes are cemented over the structure and one example 
of them is given here. Figure 4a) shows the amplitude of the frequency response of 
the harmonic analysis for a sensor placed at the optimal location (x = 0.0, y = 0.10) 
and Figure 4b) for a sensor placed at a non-optimal location (x = 0.25, y = 0.80). It 
can be observed that the response registered by the optimal placed sensor reflects the 
first three modes more clearly than the response registered by a non-optimal placed 
sensor. 

 
Figure 4 – Frequency response of the harmonic analysis. a) Optimal point. b) Non-optimal 

point 

a) b)
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We have undertaken several impact analyses and an example of them is 
provided here. Figure 5a) shows the amplitude of the frequency response of the 
impact analysis for a sensor placed at the optimal location and Figure 5b) for a sensor 
placed at a non-optimal location. Again, the better observability provided by the first 
sensor is clearly shown.   

 

Figure 5 – Frequency response of the impact analysis. a) Optimal point. b) Non-optimal 
point  

Fiber Bragg Grating Sensors 

The same analyses as those carried out with conventional sensors have been 
undertaken with FBG sensors. We have cemented a FBG rosette at the optimal 
location which is demodulated by si425 Optical Sensing Interrogator [11]. Si425 uses 
a swept laser source, a tuneable narrow-band filter to interrogate the sensor and is 
able to interrogate up to 512 optical sensors simultaneously at maximum scan rates of 
250 Hz. Figure 6a) shows the power level of the signal of each sensor and Figure 6b) 
gives an examples of monitoring vibrations with FBG sensors and si425. 

 
Figure 6 – Monitoring vibrations with si425 Optical Sensing Interrogator  

a) b) 

a) b)
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The results obtained by means of the FBG sensors are very similar to those 
represented in Figures 4a) and 5a) and consequently are not shown here. 

CONCLUSIONS 

A technique for placing strain sensors on flexible structures has been presented. The 
proposed sensor positioning criterion, based on the measurement of the von Mises 
equivalent strain, has been experimentally validated by means of a cantilever thin 
plate subjected to a harmonic excitation and to an impact loading. 

Because of the advantages of Fiber Bragg Grating sensors, we have 
concentrated our interest on monitoring the plate not only with conventional strain 
gauges but also with FBG sensors. 
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