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Abstract

Nowadays, the design of phased array transducers for nieiigmostic ultrasound
asks for an understanding of the nonlinear propagation@iste wavefields. In the
last decade an imaging modality called Tissue Harmonic Inga@HI) has become
the standard for many echography investigations. THI $igatly benefits from the
nonlinear distortion of ultrasound propagating in tissbi®ce most existing numeri-
cal models are based on a linear approximation of the undgrhyonlinear physical
reality, they cannot account for this kind of distortionv8el numerical models have
been developed in recent years that incorporate weak mamlipropagation. How-
ever, as yet no model has enabled the computation of larde sawave nonlinear
wavefields in the time domain.

In this study, we present an approach that handles weaknsamlipropagation by
means of an iterative Neumann scheme. This approach eribblesccessive use of
the solution of a linear wave problem, where the nonlingasitreated as a contrast
source. Thus, we can employ well-known linear methods figelacale wave prob-
lems to obtain the desired nonlinear wavefield.

The general formalism is outlined and applied to a one-dsiteral nonlinear wave
problem. The wavefield is evaluated, including harmoniqdiencies up to the fifth
harmonic. For each successive linear step a Green'’s funapiproach is employed.
The results are validated with a solution of the lossless &stgequation. It is ob-
served that already after a small number of iterations tkalt® are in very good
agreement with this exact result.

The proposed method can easily be extended to more compleleprs. The Green’s
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function approach enables us to discretize the spatioteahgomain very efficiently,
which opens the road to solving time domain nonlinear waeblpms in three di-
mensions. Furthermore, media with attenuation and inh@meigy can be included
straightforwardly in the algorithm.

INTRODUCTION

In order to optimize the design of medical diagnostic utitasl transducers, numeri-
cal modeling of the generated ultrasonic wavefields hasrhe@most inevitable. For
this purpose, a score of models has been developed thatipiteglicontinuous-wave
or pulse-time wavefields that are generated by phased aargducers with arbitrar-
ily steered, focused and apodized excitations [9, 12]. &mesdels operate under a
linear approximation of the basic acoustic equations, tieglecting the nonlinear
character of acoustic propagation. However, with the squredsure levels that are
common in echography, distortion of the pulse shape duerbnear propagation is
clearly observable [10]. Moreover, in the past decade agingamodality called Tis-
sue Harmonic Imaging (THI) that specifically benefits frors thffect has found its
way into the medical ultrasound practice [8]. In a wide aremedical applications,
THI has shown to give significantly improved imaging reswitsen compared with
the traditional imaging method [11, 16]. Recently, it wasgegjed that the image
quality can be further enhanced by exploiting the nonlirgiatortion more exten-
sively [1].

As THI is explicitly based on nonlinear wave propagatiorg #xisting linear
models cannot deal with it. In the recent years, severalagmres have been de-
veloped to account for the nonlinear distortion. For an wesv we refer to recent
publications/[14, 17, 18]. Many models use a plane-waveineat propagator to in-
corporate the nonlinear behavior, the approach of whichmaaipe valid for acoustic
wavefields propagating in a different direction than theégared one. The challenge
remains to develop a full-wave, nonlinear wave propagatimael that can handle
a large scale three-dimensional configuration in the timaalo, with an acceptable
cost in terms of memory and computation time.

In this paper, we present a novel solution strategy for thdinear wave prop-
agation problem. It is based on the idea that a weak nonlieiact can be repre-
sented by a correction to the linear wave problem. By itegsticorrecting the linear
wave problem by means of a Neumann scheme, we obtain theosotatthe non-
linear wave problem with any desired degree of accuracy. duivalent approach
was used in [6]. For the linear wave problem, we use the Gsdenction method.
If the Green’s function is adequately regularized, we cataiobaccurate wavefield
results with a discretization up to the Nyquist criteriontioe smallest wavelength of
interest.
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ITERATIVE NEUMANN SCHEME

The nonlinear acoustic wave propagation can be describedetiyknown second
order partial differential equations (PDE’s) like the Waselt equation, the KZK
equation and the Burgers’ equation [5]. Within the same oofl@pproximation, an
equivalent but more basic formulation is the set of first oRIBE’s [2]

Vp+pDw = f, (1)
V-v+kDyp = q, (2)

wherep is the acoustic pressurejs the fluid velocity, angf andq denote the external
force and volume source$);, = J; + v - V is the total time derivative, andandx
are the field-dependent mass density and compressibilign@s [7, 15]

p = poll+ kopl, 3)
= ko[l + Ko(1 —20)p]. (4)

Here, 3 is the nonlinearity parameter. As a key step of our schemeagewete the
set of equations that result from Egs. (1) to (4) by gathettrggnonlinear terms in a
contrast source term on the right hand side. The resultingtemns can be cast in the
general matrix form

DLF + M'"D'F =S + SY(F), (5)

where D%, D denote the linearized differential operators in space and,tand
M" denotes the linear medium behavior. In the present caséigttievariables, ex-
ternal sources and nonlinear contrast source terms arenvas

| | f Nogn | —pov - Vv — poropDyv
F_[Pl’ S_{q } S <F)_{—Hov-Vp—F&%(l—Qﬁ)thp - ©

We assume that the contrast source & F') will be weak with respect to
the other terms. If we can obtain a linear operdidhat solvesF' in terms ofS and
SN ie.

F=L[S+SY(F)], (7
then we can set up the following iterative scheme to appraterthe field solution of
the nonlinear problem:

F° = L[S], (8)
FI = L[S+ SY(F'™), ©)

representing our iterative Neumann scheme.
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THE LINEAR OPERATORSAND THEIR DISCRETIZATION

One method to solve a linear partial differential equatiom, to obtain the linear
operatorL in Eq. (7), is the Green'’s function or impulse response ntthidith this
method, the PDE can be translated to an integral represmnaitthe form

F=Gx,8S, (10)

whereG denotes the Green'’s function for the specific wave problgraccounts for
the relevant source terms angd, denotes the convolution with respect to the temporal
and spatial dimensions. The convolution integral can berelized by a midpoint rule
approximation, yielding a linear convolution sum in eacmesion.

For simplicity, let us restrict our analysis in this parggrdo the temporal di-
mension. Then we can write the convolution integral andigsréte form as

G+ S = / G(t—t)S(t)dt' ~ At Y~ G(t—nAt)S(nAt),  (11)
whereAt is the step size. In order to accurately reproduce the (im&a)l propagation
up to a certain frequency,..., the Nyquist limit prescribes step sizes of at most
At = 1/2fnax- TO prevent aliasing, we need to remove the frequency coirtehe
spectra ofZ andS for | f| > fuax. Thisis done by analytically filtering both functions
with an ideal filter. To efficiently perform the convolutioperation by means of the
Fast Fourier Transform (FFT) and the discrete convolutimotem [13], we need to
translate the linear convolution into a cyclic one. This@npasses the selection of a
window of interest forF', sayt € [0, T']. The source tern$ is windowed to the same
region, and the Green'’s functi@d needs to be windowed toc [T, 7). When both
the filtering and windowing operations have been performeire discretization,
then the result of the convolution sum is an accurate appraton of F' for |f| <
fmax ON pointst = nAt fort < T.

Finally, as can be seen in Eq. (6), we will need to perform isdveumerical
differentiations with respect to space and time to obtagnctbntrast source. To obtain
these on the coarse grid we revert to high-order finite difiee (FD) schemes [4].

APPLICATION TO A NONLINEAR PLANE WAVE PROBLEM

In order to illustrate and evaluate the presented methodyiWapply it to a nonlin-
ear one-dimensional wave propagation problerfrirt) in a homogeneous, lossless
medium. The set of equations described by Egs. (5) land (@icesdto two scalar
equations. We define the source to be a volume impulse source &, excited with

a harmonic signal with a gaussian envelope,S.e= [0 g(z,t) ]* with

q(z,t) = 0(x)q(t) = §(x)Qo exp [— (t t_wtd) ] sin2m fo(t — tq)].  (12)
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Here,Qo, tq4, t, andf, are the source amplitude, pulse delay, pulse width andicente
frequency, respectively. For the linear propagation moblthe pressure level at the
source is related tQ, viap = 5pocoQo-

It can be shown that the Green'’s function for this problem is

Kloat —(91 _@ _m
o o o, swo=Gu (- 1) a9

whereg(z, t) is the one-dimensional free space Green’s function [3],/d(4 is the
Heaviside step function.

The source is filtered in the-dimension using an ideal filter with a cut-off fre-
quency ofl /2Az. In the temporal dimension, the source function is not Biteas it
is already sufficiently bandlimited at grids with a step size< 4/ f,. Subsequently,
q(z,t) is windowed tox € [0, X], t € [0, 7] and discretized with step sizés: and
At. This results ing(mAx, nAt) = q(nAt)/Ax for m = 0 andg = 0 for m # 0.

Regarding the filtering oz, we will focus on the functiory(z, t). Filtering
it in both x andt¢ with an ideal filter gives an expression for which no closeinfo
is available. Instead, we take an alternative route by ¢hi@mging the operations of
filtering and windowingy(z, t) and performing them in the transform domain. For this
specific Green’s function, the windowing operation can bgressed and simplified
as

Glat) = |

7 T(x,t) = glx, ) H(@+X) - H(x— X)|[H(t+T) — H(t - T)]
= gl )[H(t) — H({t =T)]. (14)

We study the windowing and filtering operations in the sp&t@urier and temporal
Laplace domain. The transform gfz, t) is obtained as

g(k,s) = /_OO /_Oog(x,t) exp(—ikx — st)dzdt = m, (15)

wherek is the spatial Fourier parameter ane= s, + 27 f is the temporal Laplace
parameter. Ifs, | 0 the temporal Fourier transform gfz, t) is obtained, which has
singularities ak = +27 f /.

The transform domain equivalent of the windowed form gives

sin(cokT)

QX’T(k, s) = g(k,s) {1 — sexp(—sT)
Cok

— exp(—sT) cos(cokT)| . (16)
With this, we obtain the windowed form @& The subsequent filtering operation
is a trivial task in the transform domain, and we discretiee esult with step sizes
Ak =2m/2X, Af =1/2T. To avoid the singular points if we keep a small posi-
tive sy in the transform parameter. In the FFT’s, this is accountedby multiplying
the function withexp(—sot) before the forward FFT and lkp(s,t) after the inverse
FFT. These terms are kept close to 1 by setting- 0.1/7.
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Figure 1: Left: Power spectrum (idB) of the signal pressure at z = 0.1 m as
obtained by the Burgers’ equation solution (thick line) dythe algorithm aften, =

1 ton = 7 iterations with f,,.. = 7fy. We observe that each iteration gives a better
estimate of increasingly higher harmonics. Right: develept of the fundamental
(FO) and four of the higher harmonics (H2 to H5) during prop#gn.

RESULTS

The algorithm is compared with an implicit solution of the Bers’ equation [5]. For
the medium we take water, with parametggs= 998 kg m~3, ¢y = 1480 m s~!,
ko = 1/poci and = 3.5. For the source excitation we use parameters that represent
typical values for diagnostic ultrasounfl, = 1 MHz, Qy = 1 s7%, t4 = 6/ f, and

tw = 1.5/ fo. This results in a source pressure of abiolit kPa.

In Fig. 1 we illustrate the convergence of the Neumann sch&veeare inter-
ested in the frequency content of the field up to the fifth hamimdn the figure the
power spectrum of the propagating pulse is plotted at 0.1 m for the successive
iterations, along with a plot of the development of the higiermonics during prop-
agation obtained aftet = 6 iterations. It turns out that in this case it is sufficient
to use step sizeAt = Ax/co = 1/14f,, i.e. we sample the seventh harmonic fre-
guency with two points per period. Each iteration improvesrnonlinear estimate at
the higher harmonics, and after six iterations the spectiine fifth harmonic (H5)
atz = 0.1 mis reproduced with a relative square error of less than 2% .

In Fig. 2 we investigate the stability of the algorithm cldsethe theoretical
shock formation distance = 2¢3(8woQo) . ForQ, = 4 s~! we haver = 0.050 m.

In the figure, the waveform and power spectrum are plotted-at0.98z. It appears

thatas long aX < 7 the iterative scheme is stable and results in a wavefornmglast

accurate as is permitted by the number of included harmohies highest harmonic
components are slightly deviated due to the aliasing ofribe/(significant) harmonic
components at frequencies larger than,.
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Figure 2. Waveform (inVMPa, left) and power spectrum (idB, right) of the signal
pressurep close to shock formation distance £ 0.98z, £ = 0.05 m) as obtained by
the Burgers’ equation solution {-), and by our algorithm (=), witlf,,..x = 7f, and
n = § iterations. We only observe a small deviation in the wavefatitine steeper
slopes and deviations in the highest frequency componesiisite accounted for.

DISCUSSION AND CONCLUSION

In this paper, we have introduced an iterative Neumann setesran algorithm to
account for nonlinear wave propagation. The method in®wl/euccessive solution
of a linear wave problem. We have shown that with the Greemistion method the
problem can be efficiently discretized. The method was agdpmn a one-dimensional
nonlinear wave problem, of which the results already shotwdok accurate after a
small number of iterations. The stability of the iteratiehieme was also shown to be
good.

The main advantages of the proposed method are first thatwaecaunt for an
arbitrary nonlinear medium, as long as the nonlinear distois weak compared to
the linear behavior. Secondly, the nonlinear operatordspendent of the direction of
the field, which will be important for addressing problem#wgteered phased arrays.
Thirdly, the method permits an efficient discretization agphe Nyquist limit for all
dimensions. The method has two drawbacks. Firstly, the agerhtors are relatively
expensive in terms of computation time, but fortunatelydyalgorithms are available
that can effectively reduce this. Secondly, the methodireguhe storage of the field
in all spatial and temporal dimensions. Both issues are eoadtby the efficient
discretization. In the further development of the methbese issues will become
our main challenge.

In the future, we will extend the method to three dimensionta media with
dispersion. A possible development will be the inclusionnbfomogeneous media,
as the method is inherently suited for that.
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