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Abstract
Nowadays, the design of phased array transducers for medical diagnostic ultrasound
asks for an understanding of the nonlinear propagation of acoustic wavefields. In the
last decade an imaging modality called Tissue Harmonic Imaging (THI) has become
the standard for many echography investigations. THI specifically benefits from the
nonlinear distortion of ultrasound propagating in tissue.Since most existing numeri-
cal models are based on a linear approximation of the underlying nonlinear physical
reality, they cannot account for this kind of distortion. Several numerical models have
been developed in recent years that incorporate weak nonlinear propagation. How-
ever, as yet no model has enabled the computation of large scale, full-wave nonlinear
wavefields in the time domain.
In this study, we present an approach that handles weak nonlinear propagation by
means of an iterative Neumann scheme. This approach enablesthe successive use of
the solution of a linear wave problem, where the nonlinearity is treated as a contrast
source. Thus, we can employ well-known linear methods for large scale wave prob-
lems to obtain the desired nonlinear wavefield.
The general formalism is outlined and applied to a one-dimensional nonlinear wave
problem. The wavefield is evaluated, including harmonic frequencies up to the fifth
harmonic. For each successive linear step a Green’s function approach is employed.
The results are validated with a solution of the lossless Burgers’ equation. It is ob-
served that already after a small number of iterations the results are in very good
agreement with this exact result.
The proposed method can easily be extended to more complex problems. The Green’s
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function approach enables us to discretize the spatiotemporal domain very efficiently,
which opens the road to solving time domain nonlinear wave problems in three di-
mensions. Furthermore, media with attenuation and inhomogeneity can be included
straightforwardly in the algorithm.

INTRODUCTION

In order to optimize the design of medical diagnostic ultrasound transducers, numeri-
cal modeling of the generated ultrasonic wavefields has become almost inevitable. For
this purpose, a score of models has been developed that predict the continuous-wave
or pulse-time wavefields that are generated by phased array transducers with arbitrar-
ily steered, focused and apodized excitations [9, 12]. These models operate under a
linear approximation of the basic acoustic equations, thusneglecting the nonlinear
character of acoustic propagation. However, with the soundpressure levels that are
common in echography, distortion of the pulse shape due to nonlinear propagation is
clearly observable [10]. Moreover, in the past decade an imaging modality called Tis-
sue Harmonic Imaging (THI) that specifically benefits from this effect has found its
way into the medical ultrasound practice [8]. In a wide area of medical applications,
THI has shown to give significantly improved imaging resultswhen compared with
the traditional imaging method [11, 16]. Recently, it was suggested that the image
quality can be further enhanced by exploiting the nonlineardistortion more exten-
sively [1].

As THI is explicitly based on nonlinear wave propagation, the existing linear
models cannot deal with it. In the recent years, several approaches have been de-
veloped to account for the nonlinear distortion. For an overview we refer to recent
publications [14, 17, 18]. Many models use a plane-wave nonlinear propagator to in-
corporate the nonlinear behavior, the approach of which maynot be valid for acoustic
wavefields propagating in a different direction than the preferred one. The challenge
remains to develop a full-wave, nonlinear wave propagationmodel that can handle
a large scale three-dimensional configuration in the time domain, with an acceptable
cost in terms of memory and computation time.

In this paper, we present a novel solution strategy for the nonlinear wave prop-
agation problem. It is based on the idea that a weak nonlineareffect can be repre-
sented by a correction to the linear wave problem. By iteratively correcting the linear
wave problem by means of a Neumann scheme, we obtain the solution to the non-
linear wave problem with any desired degree of accuracy. An equivalent approach
was used in [6]. For the linear wave problem, we use the Green’s function method.
If the Green’s function is adequately regularized, we can obtain accurate wavefield
results with a discretization up to the Nyquist criterion for the smallest wavelength of
interest.
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ITERATIVE NEUMANN SCHEME

The nonlinear acoustic wave propagation can be described bywell known second
order partial differential equations (PDE’s) like the Westervelt equation, the KZK
equation and the Burgers’ equation [5]. Within the same orderof approximation, an
equivalent but more basic formulation is the set of first order PDE’s [2]

∇p + ρDtv = f , (1)

∇ · v + κDtp = q, (2)

wherep is the acoustic pressure,v is the fluid velocity, andf andq denote the external
force and volume sources.Dt = ∂t + v · ∇ is the total time derivative, andρ andκ

are the field-dependent mass density and compressibility, given as [7, 15]

ρ = ρ0[1 + κ0p], (3)

κ = κ0[1 + κ0(1 − 2β)p]. (4)

Here,β is the nonlinearity parameter. As a key step of our scheme, werewrite the
set of equations that result from Eqs. (1) to (4) by gatheringthe nonlinear terms in a
contrast source term on the right hand side. The resulting equations can be cast in the
general matrix form

DL
xF + MLDL

t F = S + SN(F ), (5)

whereDL
x, DL

t denote the linearized differential operators in space and time, and
ML denotes the linear medium behavior. In the present case, thefield variables, ex-
ternal sources and nonlinear contrast source terms are written as

F =

[

v

p

]

, S =

[

f

q

]

, SN(F ) =

[

−ρ0v · ∇v − ρ0κ0pDtv

−κ0v · ∇p − κ2

0
(1 − 2β)pDtp

]

. (6)

We assume that the contrast source termSN(F ) will be weak with respect to
the other terms. If we can obtain a linear operatorL that solvesF in terms ofS and
SN , i.e.

F = L
[

S + SN(F )
]

, (7)

then we can set up the following iterative scheme to approximate the field solution of
the nonlinear problem:

F 0 = L [S] , (8)

F j = L
[

S + SN(F j−1)
]

, (9)

representing our iterative Neumann scheme.
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THE LINEAR OPERATORS AND THEIR DISCRETIZATION

One method to solve a linear partial differential equation,i.e. to obtain the linear
operatorL in Eq. (7), is the Green’s function or impulse response method. With this
method, the PDE can be translated to an integral representation of the form

F = G ∗t,x S, (10)

whereG denotes the Green’s function for the specific wave problem,S accounts for
the relevant source terms and∗t,x denotes the convolution with respect to the temporal
and spatial dimensions. The convolution integral can be discretized by a midpoint rule
approximation, yielding a linear convolution sum in each dimension.

For simplicity, let us restrict our analysis in this paragraph to the temporal di-
mension. Then we can write the convolution integral and its discrete form as

G ∗t S =

∫

∞

−∞

G(t − t′)S(t′)dt′ ≈ ∆t
∞

∑

n=−∞

G(t − n∆t)S(n∆t), (11)

where∆t is the step size. In order to accurately reproduce the (non)linear propagation
up to a certain frequencyfmax, the Nyquist limit prescribes step sizes of at most
∆t = 1/2fmax. To prevent aliasing, we need to remove the frequency content in the
spectra ofG andS for |f | > fmax. This is done by analytically filtering both functions
with an ideal filter. To efficiently perform the convolution operation by means of the
Fast Fourier Transform (FFT) and the discrete convolution theorem [13], we need to
translate the linear convolution into a cyclic one. This encompasses the selection of a
window of interest forF , sayt ∈ [0, T ]. The source termS is windowed to the same
region, and the Green’s functionG needs to be windowed tot ∈ [−T, T ]. When both
the filtering and windowing operations have been performed before discretization,
then the result of the convolution sum is an accurate approximation ofF for |f | ≤
fmax on pointst = n∆t for t < T .

Finally, as can be seen in Eq. (6), we will need to perform several numerical
differentiations with respect to space and time to obtain the contrast source. To obtain
these on the coarse grid we revert to high-order finite difference (FD) schemes [4].

APPLICATION TO A NONLINEAR PLANE WAVE PROBLEM

In order to illustrate and evaluate the presented method, wewill apply it to a nonlin-
ear one-dimensional wave propagation problem in(x, t) in a homogeneous, lossless
medium. The set of equations described by Eqs. (5) and (6) reduces to two scalar
equations. We define the source to be a volume impulse source at x = 0, excited with
a harmonic signal with a gaussian envelope, i.e.S = [ 0 q(x, t) ]T with

q(x, t) = δ(x)q(t) = δ(x)Q0 exp

[

−

(

t − td
tw

)2
]

sin[2πf0(t − td)]. (12)
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Here,Q0, td, tw andf0 are the source amplitude, pulse delay, pulse width and center
frequency, respectively. For the linear propagation problem, the pressure level at the
source is related toQ0 via p = 1

2
ρ0c0Q0.

It can be shown that the Green’s function for this problem is

G(x, t) =

[

κ0∂t −∂x

−∂x ρ0∂t

]

g(x, t), g(x, t) =
c0

2
H

(

t −
|x|

c0

)

, (13)

whereg(x, t) is the one-dimensional free space Green’s function [3], andH(t) is the
Heaviside step function.

The source is filtered in thex-dimension using an ideal filter with a cut-off fre-
quency of1/2∆x. In the temporal dimension, the source function is not filtered, as it
is already sufficiently bandlimited at grids with a step size∆t < 4/f0. Subsequently,
q(x, t) is windowed tox ∈ [0, X], t ∈ [0, T ] and discretized with step sizes∆x and
∆t. This results inq(m∆x, n∆t) = q(n∆t)/∆x for m = 0 andq = 0 for m 6= 0.

Regarding the filtering ofG, we will focus on the functiong(x, t). Filtering
it in both x andt with an ideal filter gives an expression for which no closed form
is available. Instead, we take an alternative route by interchanging the operations of
filtering and windowingg(x, t) and performing them in the transform domain. For this
specific Green’s function, the windowing operation can be expressed and simplified
as

gX,T (x, t) = g(x, t)[H(x + X) − H(x − X)][H(t + T ) − H(t − T )]

= g(x, t)[H(t) − H(t − T )]. (14)

We study the windowing and filtering operations in the spatial Fourier and temporal
Laplace domain. The transform ofg(x, t) is obtained as

ĝ(k, s) =

∫

∞

−∞

∫

∞

−∞

g(x, t) exp(−ikx − st)dxdt =
1

k2 + c−2

0
s2

, (15)

wherek is the spatial Fourier parameter ands = s0 + i2πf is the temporal Laplace
parameter. Ifs0 ↓ 0 the temporal Fourier transform ofg(x, t) is obtained, which has
singularities atk = ±2πf/c0.

The transform domain equivalent of the windowed form gives

ĝX,T (k, s) = ĝ(k, s)

[

1 − s exp(−sT )
sin(c0kT )

c0k
− exp(−sT ) cos(c0kT )

]

. (16)

With this, we obtain the windowed form of̂G
X,T

. The subsequent filtering operation
is a trivial task in the transform domain, and we discretize the result with step sizes
∆k = 2π/2X, ∆f = 1/2T . To avoid the singular points in̂g, we keep a small posi-
tive s0 in the transform parameter. In the FFT’s, this is accounted for by multiplying
the function withexp(−s0t) before the forward FFT and byexp(s0t) after the inverse
FFT. These terms are kept close to 1 by settings0 = 0.1/T .
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Figure 1: Left: Power spectrum (indB) of the signal pressurep at x = 0.1 m as
obtained by the Burgers’ equation solution (thick line) andby the algorithm aftern =

1 to n = 7 iterations withfmax = 7f0. We observe that each iteration gives a better
estimate of increasingly higher harmonics. Right: development of the fundamental
(F0) and four of the higher harmonics (H2 to H5) during propagation.

RESULTS

The algorithm is compared with an implicit solution of the Burgers’ equation [5]. For
the medium we take water, with parametersρ0 = 998 kg m−3, c0 = 1480 m s−1,
κ0 = 1/ρ0c

2

0
andβ = 3.5. For the source excitation we use parameters that represent

typical values for diagnostic ultrasound,f0 = 1 MHz, Q0 = 1 s−1, td = 6/f0 and
tw = 1.5/f0. This results in a source pressure of about740 kPa.

In Fig. 1 we illustrate the convergence of the Neumann scheme. We are inter-
ested in the frequency content of the field up to the fifth harmonic. In the figure the
power spectrum of the propagating pulse is plotted atx = 0.1 m for the successive
iterations, along with a plot of the development of the higher harmonics during prop-
agation obtained aftern = 6 iterations. It turns out that in this case it is sufficient
to use step sizes∆t = ∆x/c0 = 1/14f0, i.e. we sample the seventh harmonic fre-
quency with two points per period. Each iteration improves the nonlinear estimate at
the higher harmonics, and after six iterations the spectrumof the fifth harmonic (H5)
atx = 0.1 m is reproduced with a relative square error of less than 2% .

In Fig. 2 we investigate the stability of the algorithm closeto the theoretical
shock formation distancēx = 2c2

0
(βω0Q0)

−1. ForQ0 = 4 s−1 we havex̄ = 0.050 m.
In the figure, the waveform and power spectrum are plotted atx = 0.98x̄. It appears
that as long asX < x̄ the iterative scheme is stable and results in a waveform thatis as
accurate as is permitted by the number of included harmonics. The highest harmonic
components are slightly deviated due to the aliasing of the (now significant) harmonic
components at frequencies larger thanfmax.
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Figure 2: Waveform (inMPa, left) and power spectrum (indB, right) of the signal
pressurep close to shock formation distance (x = 0.98x̄, x̄ = 0.05 m) as obtained by
the Burgers’ equation solution (· · · ), and by our algorithm (–), withfmax = 7f0 and
n = 8 iterations. We only observe a small deviation in the waveformat the steeper
slopes and deviations in the highest frequency components that are accounted for.

DISCUSSION AND CONCLUSION

In this paper, we have introduced an iterative Neumann scheme as an algorithm to
account for nonlinear wave propagation. The method involves a successive solution
of a linear wave problem. We have shown that with the Green’s function method the
problem can be efficiently discretized. The method was applied on a one-dimensional
nonlinear wave problem, of which the results already showedto be accurate after a
small number of iterations. The stability of the iterative scheme was also shown to be
good.

The main advantages of the proposed method are first that we can account for an
arbitrary nonlinear medium, as long as the nonlinear distortion is weak compared to
the linear behavior. Secondly, the nonlinear operator is independent of the direction of
the field, which will be important for addressing problems with steered phased arrays.
Thirdly, the method permits an efficient discretization up to the Nyquist limit for all
dimensions. The method has two drawbacks. Firstly, the usedoperators are relatively
expensive in terms of computation time, but fortunately good algorithms are available
that can effectively reduce this. Secondly, the method requires the storage of the field
in all spatial and temporal dimensions. Both issues are countered by the efficient
discretization. In the further development of the method, these issues will become
our main challenge.

In the future, we will extend the method to three dimensions and to media with
dispersion. A possible development will be the inclusion ofinhomogeneous media,
as the method is inherently suited for that.
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