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Abstract 
Pod silencers are dissipative silencers used in HVAC applications in which the 
absorptive material is used to line the outer wall of the duct and a central cylindrical 
pod is inserted to form a silencer with an annular flow passage.  Pod silencers are 
used in a wide range of ductwork, from the relatively small to very large applications 
with duct diameters of the order of several metres, and so in general silencer 
performance is likely to be influenced by higher order mode propagation.  
Accordingly, a numerical mode matching technique is used here to model higher 
order mode propagation in a pod silencer.  A comparison of predictions with those 
previously found assuming plane wave propagation is presented and it is 
demonstrated that, even for relatively small silencers, higher order modes play an 
important role in the performance of pod silencers. 

INTRODUCTION 

The cross-sectional shape of HVAC ductwork is typically rectangular, circular or flat 
oval.  Dissipative silencers are used within this HVAC ductwork to attenuate broad-
band noise emanating from a fan, although the silencers themselves tend to be 
restricted to rectangular or circular geometries.  Rectangular dissipative silencers are 
normally fabricated using a series of parallel baffles, at least one of which is placed 
centrally in the duct to act as a “splitter”.  These central splitters are known to 
increase sound attenuation over and above that which may be expected simply by 
lining the walls of the duct.  For a circular duct the same principle is adopted, only 
here the splitter is formed from a central cylindrical “pod” so that the silencer creates 
an annular flow passage.  Thus, the design of pod silencers shares many similarities 
with the design of rectangular splitter silencers and one should account for sound 
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propagation inside the central pod as well as the lining on the wall.  Moreover, both 
types of silencer are often used in applications in which the outer dimension of the 
duct varies from the relatively small to the very large, sometimes of the order of 
several metres.  Thus, for medium to high frequencies, it is likely that the 
performance of rectangular splitter silencers and circular pod silencers will depend 
upon the propagation, and attenuation, of higher order modes.  Accordingly, this 
article will focus on quantifying sound attenuation in cylindrical pod silencers by 
including higher order modes in the model, and also accounting for modal scattering 
over the inlet/outlet planes of the silencer. 
 Modelling relatively large dissipative silencers (e.g. over 1 m in diameter) is a 
challenge largely because of the size of the problem (either numerical or analytic).  
Normally, the silencer geometries are straightforward, however analytic techniques 
typically require a large number of modes before convergence is satisfactory, and 
numerical techniques require a large number of degrees of freedom.  To overcome 
these problems a number of approaches have found favour.  Traditionally, it has been 
common simply to compute modal attenuation rates in an equivalent infinite silencer, 
see for example [1] and [2] who examined rectangular splitter silencers; however, this 
method does not account for modal scattering at the inlet/outlet planes, which is 
known to be significant for most splitter silencers.  Alternatively, Munjal [3] showed 
it is possible to model a finite length cylindrical pod silencer by limiting the analysis 
to plane wave propagation.  Of course it is unlikely, given the typical range of 
applications of pod silencers, that Munjal’s method will be accurate over a wide 
frequency range, especially in view of the influence of higher order modes in 
predictions obtained for large rectangular splitter silencers; see [4, 5, 6].  Thus, if one 
is to model accurately the performance of pod silencers then higher order propagating 
modes should be accounted for, in addition to modal scattering at either end of the 
silencer. 
 This article adopts a numerical mode matching approach, similar to the one 
described by Kirby [5], to model sound propagation in a large cylindrical pod 
silencer.  Included in the model is the effect of a perforated sheet separating the 
absorbing material from the airway and an impervious fairing fixed to the inlet/outlet 
plane of the silencer.  Transmission loss predictions are presented for two silencer 
geometries in the absence of mean flow. 

THEORY 

The geometry of the pod silencer is shown in Fig. 1, in which a multi-mode sound 
field is assumed to exist upstream of the silencer.  The analysis proceeds by assuming 
that the acoustic fields in the inlet/outlet ducts, and also the silencer section, may be 
expanded as an infinite sum over the duct/silencer eigenmodes.  On finding the 
duct/silencer eigenmodes, the modal amplitudes are computed by application of 
appropriate axial matching conditions (after suitable truncation of each modal sum). 
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Figure 1. Geometry of pod silencer 

 
 A numerical approach, similar to that reported by Kirby [5], is adopted here so 
that a finite element eigenvalue analysis is followed by a point collocation scheme 
that fulfils the appropriate axial matching conditions.  Accordingly, the acoustic wave 
equation is given as 
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where Rp′  is the acoustic pressure in region R (where ,1=R  2, 3, 4 or 5), Rc  is the 
speed of sound in region R and t is time.  The acoustic field in each region is 
expanded as an infinite sum over the duct eigenmodes to give: 
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Here, cp′  is the acoustic pressure in the silencer section; jA , mB , mC , nD  and jF  are 

the modal amplitudes, mλ  is the (coupled) wave number for the silencer section, and 

jγ  is the wavenumber in the inlet/outlet section.  The quantities )(rjΦ  and )(rmΨ  
are the transverse duct eigenfunctions in the inlet/outlet region and the silencer 
section, respectively.  In addition, 1i −=  and 00 ck ω= , where 0c  is the isentropic 
speed of sound in air and ω  is the radian frequency. 
 The task now is to solve the eigenvalue problem for the inlet/outlet ducts and 
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for the silencer section.  The former problem is straightforward, whilst the latter 
problem has been discussed elsewhere ([4] and [5]), albeit for a rectangular geometry.  
For a circular geometry the analysis may take advantage of duct symmetry to model 
only one transverse dimension and so the following boundary conditions apply: (i) 
zero normal acoustic particle velocity at the wall, =r r3; (ii) continuity of normal 
particle velocity over each perforate; and (iii) a pressure condition over each 
perforate.  After discretising the silencer using a one-dimensional finite element 
mesh, and applying the transverse boundary conditions, a standard eigenvalue 
problem follows in terms of matrices ][A  and ][B  that may be found using the 
method of Kirby [5], where 
 
 [ ]{ } [ ]{ } ][2 0�B�A =− λ . (5) 
 
 Equation (5) yields the silencer eigenvalues λ , and associated eigenvectors � .  
It is convenient to carry out the eigenvalue analysis for the inlet/outlet ducts using the 
same finite element mesh as for the silencer and then to enforce matching conditions 
over these common nodal locations.  However, the addition of a perforate complicates 
matters, as additional nodes in the transverse finite element mesh are required at each 
perforate location in the silencer section.  The solution lies in placing the additional 
nodes in the silencer section within the porous material, so that these nodes are not 
used when matching between the silencer and the inlet/outlet ducts [5]. 
 Point collocation proceeds by matching across the inlet/outlet planes and 
enforcing the following matching conditions: for the airway (region R3), continuity of 
pressure and particle velocity over planes A and B; for regions R2 and R4, zero normal 
particle velocity over each fairing.  This yields eight coupled equations: 
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Here, Lk

mm
meCC λ0i~ = , 1N  is the number of nodes in the finite element mesh in region 

1R ; cN  is the number of nodes in the silencer chamber ( 432 NNNNc ++= ).  Vector 

3�  holds those nodal values in the silencer that lie in the airway ( 2R ); vector 3�  
holds those nodes in the inlet/outlet duct that lie on transverse locations identical to 
those chosen for 3� .  Vector S�  encompasses all nodes that lie in the porous 
material; S�  contains all nodes in the inlet/outlet duct that lie adjacent to the splitter 
fairing.  Equations (6) to (13) may be solved only after choosing appropriate 
amplitudes for jF .  Following references [4, 5, and 6], equal modal energy density 
(EMED) is chosen as this best represents the incident sound field propagating from a 
fan.  Accordingly,  
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and 0p  is a reference pressure chosen here, arbitrarily, to be equal to unity; IN  is the 
number of modes propagating in the inlet duct.  A common method for representing 
silencer performance is transmission loss (TL), which may be written as [5] 
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RESULTS AND DISCUSSION 

Predictions are presented here for two different silencer geometries.  The first 
(silencer A) has a geometry identical to a silencer studied by Munjal [3], and is 
excited by a plane wave.  The second (silencer B) is chosen to be larger and is also 
excited by a multi-mode incident sound field.  For both silencers, the absorbent 
material is fibrous and bulk reacting, so that the regression formulae of Delany and 
Bazley [7] may be used to specify the bulk acoustic properties (see also [5]).  An 
expression for the impedance of the perforate is taken from Kirby [5]. 
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 In Fig. 1, transmission loss (TL) predictions are presented for silencer A 
( m 05.01 =r , m 1.02 =r , m 15.03 =r , m 5.0=L ; 2s/m Pa 15000=σ , where σ  is the 
material flow resistivity).  The TL predictions are compared in Fig. 1 with predictions 
for the attenuation (α ) of the first and second propagating modes in the silencer, 
where )( 6858.8 0 nn �kL ℑ−=α , and with the plane wave predictions of Munjal [3].  
The geometry of silencer A is identical to one of the silencers studied by Munjal apart 
for the inclusion of fairings in the current model, and the choice of perforate model.  
Munjal does not give a value for his perforate porosity ( Ω ), and so the value chosen 
here is that which provides the best fit between attenuation of the fundamental mode 
in the current model and the TL predictions of Munjal: this value is 135.0=Ω .  In 
Figure 1, the TL predictions of Munjal and the attenuation of the least attenuated 
mode agree well; however, it is noticeable here that the higher order modes in the 
silencer are highly attenuated and so one would expect the performance of the 
silencer to be dominated by the fundamental mode.  Moreover, it is likely that the 
discrepancy between the multi-mode TL predictions and the fundamental mode is 
largely down to scattering of higher order modes at the fairings, although it is 
possible that higher order modes propagating within the silencer influence 
performance at higher frequencies.  Note also that the peaks seen in the TL 
predictions are caused by higher order modes cutting on in the outlet duct. 

 
Frequency (Hz) 

Figure 1.  Predictions for silencer A:  ——, TL multi-mode; — —, attenuation of mode 1; 
 — - —, attenuation of mode 2; ∇ , data of Munjal [3]. 

 
The silencer studied by Munjal contains a material with a very high flow resistivity.  
Such high values may be encountered in automotive exhaust silencers, but are rarely 
found in HVAC systems; instead, flow resistivity values normally range from, say, 
3000 to 7000 Pa s/m2.  In Fig. 2 TL predictions are presented for the plane wave 
excitation of silencer A, but with a modified flow resistivity of 2s/m Pa 7000=σ .  It 
is evident in Fig. 2 that the higher order modes are now far less attenuated, and that 
the second and third modes significantly affect silencer performance, even for this 
relatively small silencer.  The predictions in Fig. 2 caution against assuming plane 
wave propagation in pod silencers used in HVAC applications. 
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Frequency (Hz) 

Figure 2.  Predictions for silencer A:  ——, TL multi-mode; — —, attenuation of mode 1; 
 — - —, attenuation of mode 2;- - - -, attenuation of mode 3; —×—, attenuation of mode 4. 

 
In Figs 3 and 4 predictions are shown for silencer B, which is larger than silencer A 
(r1 m 25.0= , r2 m 5.0= , r3 m 75.0= , m 2=L , 2s/m Pa 7000=σ , and 33.0=Ω ).  In 
Fig. 3, a plane wave sound field excites the silencer and it is seen that the TL drops 
significantly at higher frequencies as sound energy “beams” down the (larger) airway.  
What is noticeable in Fig. 3 is the relatively small effect of the higher order modes on 
silencer TL, although this is probably just a function of the silencer geometry chosen 
and cannot be relied upon as a general design guide. 

 
Frequency (Hz) 

Figure 3. Silencer B (plane wave excitation):  ——, TL;—   —, attenuation of mode 1; — - —, 
attenuation of mode 2; - - - -, attenuation of mode 3; —×—, attenuation of mode 4. 

 
In Fig. 4, silencer B is excited by a multi-mode sound field (EMED), a situation that 
better represents the actual conditions experienced by a pod silencer.  It is evident 
here that as incident sound energy is transferred into higher order modes the TL 
increases at higher frequencies.  Thus, at higher frequencies this type of silencer is 
more effective at attenuating higher order incident modes.  Furthermore, the 
discrepancy between TL and the attenuation of the fundamental mode demonstrates 
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that, in order to model performance in a real system, it is necessary to account for all 
modes propagating in both the silencer and the inlet/outlet ducts. 

 
Frequency (Hz) 

Figure 4.  Silencer B (EMED excitation):  ——, TL;—   — , attenuation of mode 1; — - —, 
attenuation of mode 2; - - - -, attenuation of mode 3; —×—, attenuation of mode 4. 

CONCLUSIONS 

The point collocation technique has been applied here to pod silencers of the type 
typically found in HVAC applications.  Transmission loss predictions are presented 
for two different silencers and, after comparison with modal attenuation rates, it is 
shown that higher order modes significantly influence silencer performance, even for 
relatively small silencers.  Moreover, if multi-mode incident sound waves are present 
(as is likely downstream of a fan) then silencer performance is significantly different 
to that found under plane wave conditions.  This places a question mark over how 
accurately those transmission loss measurements taken under plane wave conditions 
replicate the performance of silencers under real operating conditions. 
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