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Abstract 
It is crucial to continuously maintain safety and functionality in a nuclear plant. In particular, in 
response to the recent piping damage accident, the necessity for detailed analysis has increased. 
Thus, frame structures, such as piping, are gaining in importance with regard to modeling, 
which can reproduce the real phenomenon. So far, the author has continuously researched 
stress wave propagation in frame structures in order to clarify the wave propagation behavior of 
non-periodic and complicated assembled structures. A spectrum element method (SEM) has 
been adopted as one of the effective methods, and its application to a real-sized structure is 
desired. When carrying out simulation of the wave propagation phenomenon to target the 
transient response, it was found that the frame element in SEM was required to be adopted by 
considering the shear and torsional deformations. Here, as the first step for the stress wave 
propagation simulation of the piping structure used in a nuclear plant, a simulation was 
attempted for a multi-connected frame structure where some components were joined. 

INTRODUCTION 

Generally, it is difficult to predict the occurrence of natural disasters such as 
earthquakes, tsunamis, and typhoons. Therefore, a performance management system 
that constantly maintains the safety and functionality of structures is required, 
particularly for critical structures like nuclear power plants. In order to realize such a 
system, it is becoming important to carry out detailed modeling procedures and 
analyses to better understand actual phenomena. Such details are important in 
understanding the phenomena occurring in frame structures such as piping systems, 
which are considered to be among the weakest and most vulnerable components of 
nuclear power plants. Nuclear power plant accidents such as the fractures caused by 
fluid elastic vibration in small tubes used for heat transfer from the steam generators 
and cracks in the welded parts of the piping caused by cyclic stress of the piping 
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vibration, have been recently reported. The clarification of the dynamic behavior of the 
piping structure during operation is urgently required in order to avoid these accidents. 
The aim of our research is to determine the dynamic behavior—especially the wave 
propagation phenomena under impulsive load—of piping systems in nuclear power 
plants, which are complicated assemblages of parts. 

The elastic wave theory has been primarily used to investigate the response of a 
structure subjected to an impact load in a structural field. The Laplace transformation is 
generally used to analyze the wave equation, which is expressed by a partial 
differential equation. However, it is not easy to analytically perform the inverse 
transformation for the solution in the frequency domain, except in some special cases. 
Due to this difficulty, many approximate methods have been proposed (For example, 
Refs.[1] and [2]). On the other hand, Krings et al.[3] changed the equation of the 
Laplace inverse transformation such that the fast Fourier transformation (FFT) 
algorithm could be used. Doyle[4] proposed another method that uses Fourier 
transformation instead of Laplace transformation and showed that the method is 
applicable to the analysis of structures with multi-degrees of freedom. This analytical 
method is called the spectral element method and has an advantage with regard to the 
ability to use the FFT algorithm. Nishida et al.[6][7] developed this method for 
three-dimensional frame structures with shear and torsional effects. By using this 
method, a multi-connected frame model with infinite boundaries is analyzed and 
compared with the experimental results in this paper. As the results, the applicability of 
the presented element is shown. 

SPECTRAL ANALYSIS OF WAVE MOTION IN FRAME 
STRUCTURES 

Governing equations for a frame 

Let us consider a homogeneous, isotropic, linear, and elastic frame. The x-axis 
coincides with the neutral axis of the frame that passes through the centroid of the cross 
section. The y- and z-axis lie in the plane of the neutral surface of the frame and 
coincide with the principal axes of the cross section. The displacements, rotational 
angles, resultant forces, and moments in each direction are represented by ,  ,  l l lu Pθ , and 

lM  ( ), ,l x y z= , respectively. The basic hypothesis of one-dimensional wave theory is 
used for longitudinal and torsional motions; and the Timoshenko beam theory, for 
flexural motions. The Timoshenko beam theory is sufficiently accurate to represent 
wave propagation behavior including bending and shear deformation[5]. As a result, the 
governing equations for the frame assume the following form: 
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and E  is Young’s modulus, G  is the shear modulus, ρ is the mass density, A  is the 
cross sectional area, yI  and zI  are the moments of inertia with respect to the y- and 
z-axis, respectively, and J is the polar moment of inertia. The resultant forces and 
moments in each direction are given as follows: 
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The shear and bending stiffness are governed by GAK  and EI , respectively, while the 
corresponding inertias are Aρ  and Iρ . 

Spectral analysis 

To obtain the general solution for Equation (1), spectral analysis is performed. Then, 
the general displacements and rotational angles can be represented as follows: 
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Local stiffness matrix of a finite length spectral element 

Consider a three-dimensional frame element of length L, as shown in Figure 1. Using 
the general solutions represented by Equation (2), the displacement shape functions for 
the spectral element can be represented by 
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Figure 1 –  Three-dimensional finite frame element 
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Let us denote the nodal displacements and forces at node 1 (x = 0) and node 2 (x = L) in 
the frequency domain by index subscripts 1 and 2, respectively. Using the condition 
that the displacements and forces at x = 0 and x = L are equal to the nodal 
displacements and forces, the unknown coefficients ,i iA B ( 1, 2i = ) and ,  i iC D ( 1, 2,3,4i = ) 
can be evaluated. After evaluating the element stiffness matrix for all the elements, the 
procedure of the conventional matrix method can be used to obtain the solution. 
However, in this case, it is necessary to compute the solution for all divided discrete 
frequencies. By the application of inverse fast Fourier transformation (IFFT) to the 
computed solution, we can obtain the solution in the time domain. 

The stabilization of numerical computation can be achieved through the insertion 
of some semi-infinite elements into the structure to be analysed[7]; these elements 
create a damping effect. Further, the use of the same method requires an analysis to be 
carried out on only a part of the large structure. 

COMPARISON OF EXPERIMENT RESULTS AND ANALYSIS 
RESULTS 

To investigate the applicability of the presented element, a multi-connected frame 
model with infinite boundaries was analyzed and compared with the experimental 
results shown in the reference [8]. The experimental model and its setup are shown in 
Figure 2 and Photograph 1, respectively. The analytical model is shown in Figure 3. 
The load history recorded in the experiment was used as the input load for the 
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analytical model (Figure 4). 
The moment histories at point No.2, obtained by experiment and analysis are 

shown in Figure 5. The global behavior of each result is similar, and the maximum 
amplitude of the moment is almost the same. On the other hand, the phase of each 
history is slightly different. The main reason for this seems to be that the boundary 
conditions of the analytical model—assumed as infinite elements—differ in the real 
conditions. 

 
 
 
 
 
 
 
 
 
 
 

Figure 2 – The experimental model       Photograph 1 – Setup of the experimental model 

 
 

 
 
 
 
 

Figure 4 – Force history at the center        
 

 

Figure 3 – The analytical model    

 
 
 
 
 
 
 

 
 
 
 

 
Figure 5 – The moment histories at point 2     
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CONCLUSION 

The application of the wave propagation analytical method for a multi-connected frame 
structure was shown in this paper. The results were compared with the experimental 
results. It was found that the presented element could effectively represent the wave 
propagation phenomena and that the modeling of the boundary condition was crucial 
for estimating the phase properties of a multi-connected frame structure. As a topic for 
future study, we are preparing to conduct the numerical simulation of the piping system 
in a real nuclear reactor system. 
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