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Abstract 
A symmetrical circular cantilever beam with periodic external excitation shows a lot of 
nonlinear response. A flexible circular cantilever beam has non-linear terms of inertia, spring, 
and viscosity. Each term represents different characteristic of the nonlinear response. In lower 
order modes, the non-linearity due to spring is dominant while the non-linear effect of inertia is 
dominant in higher order modes. In the analysis of the response characteristics of a cantilever 
beam, the jump phenomena in planar and nonplanar direction was investigated by examining d 
in the analysis of the frequency response characteristics. During the non-linear phenomena, the 
superharmonic and subharmonic motions of the beam were analyzed by using autospectrum 
and cepstrum. The phase portrait method is used for the analysis of phase change due to change 
in excitation frequency. In the analysis, it can be seen that the subharmonic motion plays an 
important role in causing non-linearity in the beam. 

INTRODUCTION 

A circular cantilever beam excited to a nonlinear vibration shows very interesting 
dynamic characteristics of nonlinear response. A flexible circular cantilever beam has 
nonlinear terms of inertia, spring, damping, gravity, warping, and so on. When the 
external excitation force is weak, the beam shows a linear motion, but as the force 
increases, the linear motion transforms to a nonlinear motion due to the nonlinear terms. 
It is needed to study the characteristics of the nonlinear terms of a system by analyzing 
the nonlinear phenomena and to find causes of the phenomena in the view of dynamics. 
Also, it is necessary to study on the physical characteristics of those phenomena. To 
study them, an experimental method is adopted and a long slender circular cantilever 
beam is used. The transition process of the motion from linear state to nonlinear state is 
analyzed, applying an external base harmonic excitation of the beam. The subharmonic 
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and the superharmonic motions are analyzed using autospectrum of FFT and cepstrum. 
The phase change in the nonlinear motion is traced by using an oscilloscope. Quasi 
periodic phenomena are analyzed by investigating the torus structure [1],[3].  

 ANALYSIS OF NONLINEAR VIBRATION 

Analysis of Subharmonic and Superharmonic motions  

When nonlinear phenomena occur in a system under an external excitation force, the 
system shows subharmonic or superharmonic motions. And the relation of the 
excitation frequency Ω  to the response frequency of the system can be written as the 
following [7], [10]. 

 
mω = Ω  superharmonic motion, 
1
n

ω = Ω  subharmonic motion, 

m
n

ω = Ω  super-subharmonic motion,                                         (1) 

where m and n are integers. ( 1, 1m n )≠ ≠  
 
The analysis of the time series is necessary to study the harmonic motions, but 

when the response is complicated, the analysis is hard to be performed. In that case, the 
study can be done easily if the time signal is converted to a frequency signal by 
performing FFT analysis for the response signal. When the peak value of autospetrum 
is analyzed, it is possible to analyze the superharmonic, subharmonic, and 
super-subharmonic motions. 

When the response signal with the nonlinearities is investigated using the 
autospectrum, many components of the harmonic motions are detected. To analyze the 
periodicity of those components, the cepstrum is used. The cepstrum is defined as the 
power spectrum of the logarithm power spectrum. The power cepstrum is defined as 
the following. 

 
1( ) [log ( )]AA AAC F Sτ −= f .                                                               (2) 

( )AAC τ : Power cepstrum 

AAS    : Auto spectrum 
1F −   : Inverse Fourier Transform 

 
The cepstrum is obtained when the autospectrum is applied to the inverse Fourier 

transform. In the autospectrum, when the spectrums, which are harmonic components 
of a high frequency or components of a side band frequency, are arranged at a fixed 
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interval, the interval can be presented in a period. Since the harmonic components of a 
high frequency and the components of a side band frequencies yield only one peak 
value in the time axis, the phenomena of frequency modulation can be analyzed when 
the system has nonlinearities. 

Analysis of Phase Analysis  

The phase portrate of a cantilever beam can be analyzed two dimensionally in the 
planar direction (x-axis) and in nonplanar direction (y-axis). Since the planar and 
nonplanar motions have the form of a periodic vibration in one-to-one resonance, they 
can be written as the following [11]. 

 
1 1cos( )x a t 1ω α= − , 

2 2cos( )y a t 2ω α= − .                                                                       (3) 
Since 1 2ω ω≅  in one-to-one resonance, 

1 cos( )x a tω= , 

2 cos( )y a tω ϕ= + .  ϕ  : phase difference                                       (4) 
 

Thus, various types of phase portrate can be shown depending on ϕ  and the 
change of phase between the planar and the non-planar motions in one-to-one 
resonance are possible to be analyzed. 

 

Analysis of Phase Portrate  

In a nonlinear system, the response signals are possible to be converted from signals in 
time to signals in phase space. When the acceleration signal is converted to the signal in 
phase space by applying the integral-differentiation, it has the form of non-autonomous 
periodic orbit. In figure 2, each black dot represents a portrate that shows particular 
phases for the frequency of external excitation. The path from one point to the next 
represents a periodic component with the excitation frequency 2T π= Ω . It is useful to 
present the motions of the system in the expanded phase space with the time 
variable 3x t= . The motions of the system in this space are autonomous and each 
portrate doesn’t intersect each other. In the planes of the phase space ( , )x x , which are 
normal to each other, considering the intersection of these portrates, Poincare`Map can 
be obtained. Poincare`Map can be obtained when the transverse planes are separated 
with the excitation period T along the axis of time. Its usefulness derives from the 
uniqueness property, but it is the weak point that it has a lot of planes to present many 
motions in the wide space of phase. Connecting two planes in the phase space, Solid 
Torus Region (DXS`) is formed and the center of torus becomes the axis of time. The 
portrate of torus has a singular cross section that can slice it continuously. Thus the 
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toroidal region is very useful in analyzing the dynamic phenomena of a nonlinear 
system even though it is not a real phase space [5], [8], [11]. 

 

 
Figure 1 – Phase space on the same frequency 

 

 
 

Figure 2 – Phase space and Extended phase space of the subharmonic 
 

 
 

Figure 3 – Poincare’ surface of section on the toroidal space 
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EXPERIMENT ON NONLINEARITIES 

To investigate the nonlinearities, a circular beam of aluminum alloy was used as a 
uniform elastic material. The dimensions of the beam were: the modulus of elasticity 
E=72GPa, the coefficient of stiffness G=27GPa, Poisson’s ratio 0.3333ν = , mass per 
unit length the beam , diameter 0.0336 /m Kg= m 5mmφ = , length L=675mm. For the 
excitation of the beam, base harmonic excitation was applied to the fixed part of the 
base in the form of a sine wave with constant amplitude. 

 

 
Figure 4 – Accelerometer position on the circular cantilever beam 

 

         
Figure 5 – One-to-one resonance of the circular cantilever beam on the second mode 

 
Table 1 Measured natural frequency and damping coefficient of the circular cantilever beam 

 
Mode λ Theory(Hz) Meas.(Hz) Damping 

1 1.8751 7.94 7.63 1.510% 
2 4.6941 49.78 48.25 0.736% 
3 7.8548 139.40 135.13 0.341% 
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The flexible beam was fixed to the shaker to satisfy the boundary conditions of 
the cantilever beam. Keeping the voltage applied to the shaker constant, the experiment 
was performed by increasing or decreasing the excitation frequency. When the voltage 
to the shaker is kept constant, the speed component in the harmonic vibration has a 
constant value regardless of the change of excitation frequency. The increase and 
decrease of excitation frequency were in the form of sine sweeping and the rate of 
change was 0.030Hz/s. 

The experiment was performed by increasing the amplitude of the excitation with 
the frequency fixed in the second mode (48.25Hz) of the beam. The process of change 
in the beam from the linear vibration to the nonlinear vibration was investigated as the 
amplitude of the excitation increases. The nonlinear vibration was investigated using 
the autospectrum and the cepstrum in the analysis of superharmnomic, subharmonic, 
and super-subharmonic motions. To investigate the change in the phase of the vibration, 
the phase portrate was analyzed with the oscilloscope and the analysis of Torus was 
performed to examine the form of chaos. 

To investigate the response of the beam, each B&K 4374 accelerometer was 
attached to the beam in the planar and nonplane directions. The mass of each 
accelerometer was about 0.65g, the range of frequency for measurement 1-25 KHz, and 
the level of measurable acceleration 250,000 . The accelerometers were attached 
to the surface of the beam 100mm above the base with a strong adhesive. 

2/m s

EXPERIMENTAL RESULTS AND DISCUSSION 

The nonlinear responses of a flexible cantilever beam were investigated in the second 
mode of the beam using the autospectrum and the cepstrum. In the autospectrum, it can 
be seen that the higher orders of harmonic vibration,  and  occurred around 
the reference frequency and the subharmonic vibration of 

0 02 ,3 ,f f 04 f

0 (48.25 )f Hz 1 2 of  and   higher 
subharmonic vibration of 03 2 f  and 05 2 f  occurred (Figure 6). When the nonlinear 
signals of response in the second mode are examined with the cepstrum, the harmonic 
components in the frequency region can be easily analyzed. In the cepstrum, it can be 
seen that the large values of  and  appear around  and the 
components of 

03 f 04 f 0 (20.51 )f ms

01 2 f  and 1 4 of  are well shown (Figure 6). In the phase analysis of the 
planar and the nonplanar motions in the second mode of the beam, it can be seen that 
the one-to-one resonance makes the planar motion dominant in the planar motion. It is 
also shown that the difference of phase angle between the planar and the nonplanar is 
up to 180o (Figure 7). In the analysis of the system based on torus, it is shown that the 
element of 01 2 f  is the main component of the nonlinear vibration in the second mode 
(Figure 8). 
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Figure 6 – Autospectrum and Cepstrum of the planar and nonplanar in the second mode 

 

   
Figure 7 – Phase change in phase space of the second mode (x-planar, y-nonplanar) 

 

 
Figure 8 – Torus analysis in the second mode (x-velocity, y-displacement) 

CONCLUSION 

To investigate the nonlinear vibration of a flexible circular cantilever beam under the 
base harmonic excitation, the autospectrum, cepstrum, phase portrate, and torus were 
used. When the nonplanar motion occurred in the second mode of 48.25Hz, due to 
one-to-one resonance, the nonlinear responses of superharmonic, subharmonic, and 
super-subharmonic motions were investigated. In the autospectrum, the superhamonic 
components of  and  were dominant around . In the cepstrum, the 0 02 ,3 ,f f 04 f 0 (48.25 )f Hz
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subharmonic components of 01 2 f  and 01 4 f  were dominant around . However, in the 
phase analysis using torus, the phase component of 

0f

01 2 f  was dominant. Thus, it can be 
seen that in addition to the component of , 0f 01 2 f  also plays an important role in 
causing the nonplanar motion in the one-to-one resonance.  In the phase analysis of the 
planar and the nonplanar, it can be seen that the phase angle varies largely. Finally, it 
can be concluded that further study is needed to define the role of change of the phase 
angle in the nonlinear vibration. 
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