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Abstract 
The shear actuated control of structures has occupied a considerable portion of the literature 
in the previous years. Shear controlled mechanisms has proven effective in active vibration 
damping with advantages that has been reported repeatedly. In this paper, we present a model 
for the control of the sandwich beam vibration using the assumed modes method. A velocity 
feedback control algorithm is used. The results have proven the accuracy of the model as well 
as the effectiveness of the control mechanism. Also, it was shown that the control was more 
effective when based on the second mode vibration. 

INTRODUCTION 

The use of piezoelectric actuators in the field of vibration damping and shape control 
has been extensively studied during the past decades. The main setup of the 
controlled structures was through the bonding of a piezoelectric patch on the surface 
of the structure which in turn gets actuated by a control signal or passive techniques. 
The choice of bonding the piezoelectric material to the surface was taken to obtain 
maximum strain at the surface of the structure; consequently, the piezoelectric 
patches were subjected to high stresses as well as being subject to damage by foreign 
objects. The use of the embedded shear piezoelectric controllers overcame those 
drawbacks [1-4]. Finite element formulations that describe the behaviour of this new 
family of controllers were also introduced [5-7] to facilitate the analysis of realistic 
structures. Enhancements on the analytical models were developed in parallel to the 
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numerical techniques [8-9] together with studies on different control techniques [10-
12]. The assumed modes analysis was used to study the control of thin beams by 
Abreu et al.  [13]. In this paper, we will present a numerical study of the control of a 
shear actuated beam using the assumed modes method. A PD controller is used to 
demonstrate the method. The results are verified using published results. 

THEORETICAL FORMULATION  

A sandwich beam with thin, elastic face beams and a core that behaves as a 
Timoshenko beam is considered for the modal vibration analysis (Figure 1). Linear 
theories are used to derive the governing equations. The transverse displacement w of 
all points in any cross section of the sandwich beam is considered to be the same. For 
simplicity, the face beams are assumed to have the same thickness tb, density ρ, and 
modulus of elasticity E. The sandwich beam has length L and width b.  

 
Figure 1. Geometry and deflections of a sandwich beam with shear piezoelectric core 

Kinematics 

Considering the geometry of motion shown in Figure 1, the normal strain 
xε and the shear strain xzγ  of the piezoelectric core layer are given by 

xzxux ∂∂−∂∂= ψε 2 , ψγ −∂∂= xwxz ; where ψ denotes the shear angle of the core 
(i.e. rotation of the cross section) and 2u is the longitudinal displacement of the core. 
Note that xw ∂∂= /ψ  for the Euler-Bernoulli face beams. The shear angle, described 
by the longitudinal displacements of the face beams u1, u3 and the transverse 
displacement, w, is given by hxwtuu b )( 13 ∂∂−−=ψ . 
     

Thus, using the above strain-displacement relations, the shear strain is described 
by hxwduuxz )( 31 ∂∂+−=γ ; where bthd += , with subscripts 1, 2, and 3, denoting 
upper face beam, core, and lower face beam respectively. Because of the symmetry of 
the sandwich beam, the longitudinal displacement of the core u2 is found to be 

( ) 2312 uuu += . From the above, the displacement field could be fully described 
using 1u , 3u , and w. 

Constitutive Relation 

Using the plane stress assumption, the constitutive equations of a piezoelectric 
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material in shear mode can be expressed as: 
 

( )pxzxzxx CC γγτεσ −== 5511 &  (1) 

     
With 115555533

2
131111 &,, EdCCCCCC p ==−= γ ; where Cij (i,j=1,2,…,6), d15 and 1E  

denote the stiffness matrix components, the piezoelectric shear coefficient, and the 
electric field applied across the thickness of the shear mode actuator, respectively. 
Also, pγ stands for the piezoelectric induced shear strain. For the isotropic, Euler-
Bernoulli face beams, no transverse shear strain exists and the elastic coefficients are 
totally defined using Young’s modulus E and Poisson’s ratio ν . The constitutive 
relation for the face beams in this case is given by xx E εσ 11=  with )1/( 2

11 ν−= EE .  

System Energy 

The potential energy of both face beams Ub can be expressed as 
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where I denotes the moment of inertia of the face beams. The potential energy Up of 
the piezoelectric core is given by: 
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where )()()( 21 xxHxxHxR −−−= . With x1 and x2 denoting the position of the piezo 
actuator along the beam axis which is defined using the Heaviside function H, and pI  
denotes the second moment of area about the piezo layer neutral axis. Upon 
substitution of strain-displacement relations in the last equation and performing some 
manipulations, the potential energy term of the piezo core becomes 
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where 2

2111155 &,4, hICbhChbC === αββ . In the same manner, the kinetic 
energy, neglecting rotary inertia, of both face beams  and the piezoelectric core 
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respectively are: 
 

∫


















∂
∂

+






∂
∂

+






∂
∂

=
L

bbbb dx
t

u
m

t
u

m
t
wmT

0

2
3

2
1

2

2
2
1

 
 

(5) 

dxxR
tx

w
t

u
t

tx
w

t
ut

t
u

t
um

t
um

t
um

tx
wt

t
wmT

bb

L

bp

)(22)
4

(2

)
4

()
4

(
2
1

2
3

2
131

2
3

2
1

0

22
2

2





∂∂

∂
∂
∂

−
∂∂

∂
∂
∂

+
∂
∂

∂
∂

−−








∂
∂

++






∂
∂

+





+








∂∂

∂
+







∂
∂

= ∫

µµµ

µµµ

 

(6) 

 

where bhm
h

Ibtm bb 22
22 &,, ρρµρ ===  

Assumed Modes Analysis  

The assumed modes method, in terms of generalized coordinates, is used to 
discretize the energy equations and expand the transverse displacement w in the form 

)()(),( txWtxw Tθ= , and the longitudinal displacements of the face beams 1u and 3u  
as )()(),(1 txUtxu Tφ=  and )()(),(3 txVtxu T ξ=  respectively. The displacement 
functions W, U, and V are sets of admissible functions that are chosen to satisfy the 
geometrical boundary conditions  [14]. The assumed modes method has been 
successfully used to analyze the dynamics of three-layered damped sandwich beams 
 [15]. Substituting the assumed modes in the strain and the kinetic energy terms and 
applying Lagrange’s equation, the differential equation of motion, in matrix form 
becomes 

 
[ ]{ } [ ]{ } { } { }FEtqKtqM p +=+ 1)()( δ&&  (7) 

 
where [M] and [K] denote the mass and stiffness matrices of the sandwich beam while 
{ } { }Tttttq )(),(),()( ξφθ= and {F} are vectors of the generalized coordinates and 
generalized forces respectively. The vector { } 1Epδ  denotes the non-conservative work 
done by shear actuation forces and moments with 
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Shear Actuation Forces and Moments  

To further demonstrate the shear actuation mechanism in terms of longitudinal 
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forces and bending moments, consider an element of the sandwich beam with a 
piezoelectric core. The induced shear stresses by the piezoelectric actuator form equal 
and opposite shear stresses on the face beams. On the other hand, the induced shear 
stresses form a moment about the core’s neutral axis as well as a moment about each 
face beam’s neutral axis. The induced shear actuation force per unit length on any of 
the face beams is defined as bCEdbCbF ppp 5511555 === γτ . This force, upon 
multiplication by the rod displacement modes and integration over the length of the 
piezo, will represent the distributed induced shear actuation work. Similarly, the 
summation of moments about each layer’s neutral axis caused by the induced shear 

forces is found to be dFhFtFtFm pp
b

p
b

pp ⋅=⋅+⋅+⋅=
22

. The resulting moment, 

upon multiplication and integration with the bending slope, represents the actuation 
work done on the sides of the piezo. Thus, it can be seen that the induced shear forces 
and moments agrees with the non-conservative work obtained in the last section. 

Active Control 

A proportional plus derivative feedback controller is considered for this study. 
Accordingly, the electric field, in Laplace domain, may be expressed as 

{ } { })()(1 sqCsKKE T
dp +−=  (9) 

 
where Kp and Kd  are the proportional and derivative control gains, respectively, 

and {C} is a vector denoting the modes upon which the control effort is applied. Also, 
s denotes the Laplace complex number. The equation of motion for the closed-loop 
system takes the form 

 
[ ]{ } [ ]{ } { }{ } { } { }{ } { } { }FsqCsksqCksqKsqMs T

pd
T

pp +−−=+ )()()()(2 δδ  (10) 

 
Rearranging the last equation and grouping similar terms results in 
 

[ ] [ ]( ){ } { }FsqKKKsMs pd =+++ )(][2

 (11) 

 
where { }{ }T

ppp CkK δ=  and { }{ }T
pdd CkK δ=  denote the control gain stiffness 

and damping matrices respectively. 

NUMERICAL EXAMPLE 

Validation 

To validate the present analysis, the natural frequencies of a cantilevered 
sandwich beam with a piezoelectric shear core are evaluated and compared to results 
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from the literature  [5]. The geometric properties of the sandwich beam are shown in 
Figure 2 and material properties are the same as presented by Lin et al.  [16]. For the 
cantilever structure, rod mode shapes are used to represent the longitudinal 
displacements 1u and 3u  while beam mode shapes are used for the transverse 
displacement w. Good agreement has been found between the two different analyses 
(Table 1).   
 

Table 1. Natural frequencies of the cantilevered sandwich beam (Hz) 

Mode Assumed Modes Finite Element  [5] 

1 990 985
2 3961 3912 
3 8446 8305 
4 17176 17273 
5 25640 25980 

 
Table 2. Mechanical properties of the face beams and the piezoelectric core 

PZT5H Foam AL 
GPa kg m-3 MPa  Kg m-3 GPa  kg m-3 
C11 C13 C33 C5

5 
2ρ  E ν  density E ν  ρ  

126 84.1 110 23 7730 

 

35.3 0.383 32 

 

70.3 0.345 2690 
 

 
Figure 2. Dimensions of the sandwich beam 

 

Performance of Controlled Structure 

In this section, the closed-loop response of the actively controlled structure is 
compared to the response of the uncontrolled structure for the first two bending 
modes. The same geometry is used from the free vibration analysis and the material 
properties are given in Table 2 with the piezoelectric constant Vmd /10740 12

15
−×= . 

Using a velocity, derivative, feedback, the structural response to a sinusoidal tip-force 
is significantly damped as shown in Figure 3 and Figure 4. The first mode feedback 
regime significantly affects the first mode and moderately affects the second mode as 
shown in Figure 3. However, feedback of the second mode significantly damp out 
both modes as shown in Figure 4.    
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Figure 3. Frequency response of uncontrolled and controlled structures (first mode feedback: 

KP=0, Kd=1×104) 

 
Figure 4: Frequency response of uncontrolled and controlled structures (second mode 

feedback: KP=0, Kd=1×104) 

CONCLUSIONS 

The dynamic equations of motion are developed for a sandwich beam with 
shear piezoelectric core using the assumed modes method. Active damping is 
generated in the structure using modal feedback control technique. It has been shown 
that the shear actuation mechanism enhances the active damping characteristics of the 
structure. For the first two beam bending modes, the second mode feedback results in 
significant damping in both first and second modes, while the first mode feedback is 
less significant in damping the second mode. 
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