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Abstract 
Ball-type automatic balancers can effectively reduce the vibrations of an optical disk drive due 
to the inherent imbalance of the optical disk. Although ball-type automatic balancers used in 
practice consists of several balls moving freely along a circular orbit, no studies have 
investigated the dynamic characteristics of ball-type balancers with more than two balls. This 
paper aims to study the dynamic stability of a three-ball automatic balancer. Emphasis is put on 
the stability of the equilibrium positions of the balls where the disk is perfectly balanced. A 
theoretical model of an optical disk drive packed with a three-ball automatic balancer is 
constructed first. The governing equations of the theoretical model are derived using 
Lagrange’s equations. Closed-form formulae for the equilibrium positions are presented. 
Stability of the perfect balancing equilibrium positions is investigated by the center manifold 
theorem. The theoretic results are verified by numerical analysis. 

INTRODUCTION 

Optical disk drives have been widely used for data storage. The speed of the spindle has 
been brought up to 10,000 rmp to increase the data transfer rate. At such a high rotating 
speed, the optical disk drive may suffer from serious vibrations due to the eccentricity 
of the optical disk used. Since the unbalance varies from disk to disk, it is desirable to 
have an automatic balancer system (ABS) equipped with the optical disk drive that can 
eliminate the unbalance associated with each disk automatically. The most popular 
ABS adopted by optical disk drive industry is the ball-type ABS. A ball-type ABS 
consists of several balls moving freely in a circular groove. Under proper working 
conditions, the balls will settle at the positions such that the vibration due to the 
eccentric mass of the disk can be totally suppressed. These particular positions are 
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called the perfect balancing positions henceforth. The performance of the ABS is 
closely related to the stable regions of the perfect balancing positions.  

Although the ball-type balancers currently used in practice consists of several 
balls, much work has been done on the dynamics characteristics of a single-ball or 
two-ball balancers. Bövik and Högford [1] analyzed the stability of the perfect 
balancing position by the method of multiple scales. Rajalingham et al. [2] investigated 
the nonlinear system consists of an undamped rotor and a single-ball ABS. The 
stability of the equilibrium position was determined by the corresponding linearized 
system. Lee and Moorhem [3] numerically determined the stable region for perfect 
balancing by the Floquet theory. Chung and Ro [4] and Kang et al. [5] investigated the 
stability of a two-ball ABS comprehensively. The stability was checked with the 
variations for a pair of design parameters. Huang et al. [6] studied the dynamic 
characteristics of a single-ball ABS. Kim et al. [7] investigated the dynamic behaviour 
of a two-ball balancer based on a three-dimensional model. Chao et al. [8] evaluated 
the performance of a two-ball balancer with consideration of the in-plane rotational 
motions. To the best of the authors’ knowledge, no researchers have investigated the 
effects of the number of balls on the performance of ball-type automatic balancers.  

In the present paper, we study the stability of the perfect balancing positions of a 
rotating disk equipped with a three-ball ABS. The nonlinear equations of motion are 
derived with respect to a rotating coordinate system. Equilibrium positions and the 
associated linearized equations are derived. Stable areas of the perfect balancing 
positions on a parametric plane are identified using the center manifold theorem. 
Finally, time responses of the system are computed to verify the analytic results. 

MATHEMATICAL MODEL AND GOVERNING EQUATIONS  

Figure 1 shows the schematic of the ABS-rotor system and the rotating reference frame. 
The ABS is composed of a circular disk with a groove containing balls and a damping 
fluid. The balls move freely along the groove, subjected to viscous damping only. The 
radius of the groove is δ. The rotor consists of an unbalanced rotating disk and the 
suspension system. The disk with mass dm  rotates with a constant angular velocity ω . 
The mass center G of the disk is located a distance e from the disk’s geometric center C. 
The flexibility of the suspension system is characterized by equivalent linear springs 
and viscous dampers, denoted by ( ),x yk k  and ( ),x yc c , respectively. For simplicity, 

we assume that x yk k K= = , x yc c C= = . 
The xy-reference frame rotates with the rotor speed ω . The center C of the disk is 

located at the origin O when the supporting springs are undeflected. The mass center G 
is defined by the coordinates ( ),x y  with respect to the rotating frame. The position of 
the ith ball is given by the angle iβ  relative to the mass center G. The reason for the 
choice of this rotating frame is that the equations of motion expressed in this frame are 
autonomous. 
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Figure 1 – Schematic of the system and co-rotating reference frame 

The equations of motion are derived from Lagrange’s equations given by  
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where T  is the kinetic energy, V the potential energy, R Rayleigh’s dissipation 
function, and kq  the generalized coordinates. The kinetic energy can be expressed as  
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where J is the moment of inertia of the equivalent rotor and 3s d bM m m m= + +  
indicates the total mass of the system. The potential energy is given by 

 ( )2 21
2

V K x y= +   (3) 

Rayleigh’s dissipation function can be represented by 
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Substitution of Eqs. (2), (3) and (4) into Eq. (1) yields the nonlinear equations of 
motion as follows: 
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In order to simplify the subsequent analysis, the following dimensionless variables are 
introduced, 
 * / ,     * / ,     * / ,      * nx x e y y e e t tδ δ ω= = = =  

where /n K Mω =  indicates the natural frequency of the system. The equations of 
motion in terms of the dimensionless variables defined above can be written in matrix 
form as: 
 ( ) 0′′ ′+ + + + =Mq C G q g f , (8) 

where [ ]1 2 3*, *, , , Tx y β β β=q , ( )′  indicates differentiation with respect to *t , and  
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EQUILIBRIUM POSITIONS 

The first step in analyzing a nonlinear system is to identify the equilibrium positions. 
Setting 0′ =q  and 0′′ =q  in Eq. (8), the location of the equilibrium positions 

1 2 3[ , , , , ]Tx y β β β=q  is given by ( ) 0=f q . This set of equations can be expressed 
explicitly as  
 ( ) ( )2 2 2

1 2 31 2 cos cos cosx yζ µη β β β µ− Ω − Ω − Ω + + = Ω  (9) 

 ( ) ( )2 2
1 2 31 sin sin sin 0x yζ µη β β β2 Ω + − Ω − Ω + + =  (10) 

 sin cos 0, 1,3i ix y iβ β− = =  (11) 

To solve Eqs. (9)-(11), we introduce the polar coordinates cosx r θ= , 
siny r θ= , and rewrite Eqs. (11) as 

 ( )sin 0ir β θ− = .  

The above equations require that ( )sin 0iβ θ− =  or 0r = . The solution 0r =  
indicates that there is no residual vibration. The associated equilibrium positions are 
called the perfect balancing positions. In this paper, we concentrate on the stability of 
the perfect balancing positions. Substituting 0x y= =  into eqs. (9) and (10) yields  
 1 2 3cos cos cos 1/β β β η+ + = −  (12) 
 1 2 3sin sin sin 0β β β+ + =  (13) 
Equation (12) indicates that 1/ 3η ≥ . In other words, perfect balancing is possible only 
when the total eccentricity of the 3 balls is no less than that of the disk.The positions of 
the three balls cannot be determined uniquely from these two equations. In other words, 
there are infinitely many equilibrium positions for 0r = . The steady-state equilibrium 
positions depend on the initial conditions. However, if the position of one of the balls is 
given, say 3β , the positions of the other two balls can be determined uniquely. Then we 
proceed to study the stability of the perfect balancing positions.  

STABILITY ANALYSIS 

The stability of an equilibrium configuration can be determined by the eigenvalues of 
the associated linearized system if all the eigenvalues have negative real parts or at 
least one of the eigenvalues has a positive real part. The linearization fails when the 
linearized system has some eigenvalues with zero real parts and no eigenvalues with 
positive real parts. Figure 2 is a typical result showing the variation of  the eigenvalues 
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of a perfect balancing equilibrium configuration with the rotation speed. As can be seen 
from the figure, when the rotation speed is lower than about 1.51, one eigenvalue has a 
positive real part. Hence, the perfect balancing position is unstable for 1.51Ω < . On 
the other hand, when the rotation speed is higher than 1.51, one eigenvalue is zero 
while the other eigenvalues have negative real parts. Since none of the eigenvalues in 
this speed range have positive real parts, the stability of the perfect balancing 
configuration cannot be determined from the linearizd system. In this case, the center 
manifold theorem is employed to study the stability of the equilibrium configuration.  
 
 
 
 
 
 
 
 
 
 
 
  

Figure 2 – Variation of eigenvalues with the rotation speed for a 3-ball balancer 

In order to determine the center manifold, we first rewrite Eq. (8) into the 
standard form as  
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( )
,

,
c c s

s s s c s

v G v

v

=

= +

v

v J v H v
, 

where cv  is the coordinate associated with the eigenvalue 0, sv  a 9-dimensional vector, 
G a scalar function, sJ  and H are 9 9×  matrices. Further, ( )0, 0G =0 , ( )0, 0=H 0 , 

and the Jacobian matrices ( )0, 0DG =0  and ( )0,D =H 0 0 . There exists a local center 

manifold of the form ( )s cv=v h , where h is a polynomial function of cv  [9]. By 
approximating the components of h with polynomials, the equation describing the 
dynamics of the one-dimensional center manifold can be expressed as 

( )2 3 4
2 3c c c cv v v O vα α= + + . The stability of the equilibrium configuration depends on the 

values of iα . If 2 0α ≠ , the equilibrium configuration is unstable. If 2 0α =  the 
equilibrium configuration is stable for 3 0α <  and unstable for 3 0α > .  

RESULTS AND DISCUSSION 

Previous investigations on the ball-type automatic balancer indicate that the rotation 
speed Ω , damping ratio ζ  of the suspension, and damping ratio bζ  of the ball-orbit 
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are important parameters influencing the performance of the automatic balancer. 
Therefore, we study the stability of the perfect balancing positions on the ζ − Ω  plane 
point by point. Stable areas in which perfect balancing positions are stable are 
identified.   
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 – Comparison of the stable areas of the 3-ball (solid) and 2-ball (dashed) balancers  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 – Radial vibrations of the 3-ball balancer at points A and B 

Figure 3 compares the stable areas of the 3-ball and 2-ball balancers for various 
values of bζ . The solid and dashed lines indicate the boundary of the stable area for the 
3-ball and 2-ball balancers, respectively. For example, when 0.1bζ = , the perfect 
balancing positions associated with point A are unstable for both the two- and three-ball 
balancer; the perfect balancing positions associated with point B is stable for the 
three-ball balancer but unstable for the two-ball balancer. Time responses of the 
nonlinear system with the three-ball balancer associated points A and B are computed 
numerically to verify the stable area obtained. The results for 0.1bζ =  are shown in 
Fig. 4. It can be seen that the perfect balancing positions associated with point A are 
unstable while those with point B are stable. This verifies the results shown in Fig. 3. 
Further, as can be seen from Fig. 3, the 3-ball balancer has a larger stable area than the 
2-ball balancer. This, in turn, implies that the 3-ball balancer has better performance 
than the 2-ball balancer. 
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COCLUSION 

Ball-type automatic balancers are employed widely by optical disk drive industry to 
suppress the vibrations induced by the eccentricity of the optical disk. Proper 
conditions under which perfect balancing is possible are closely related to the stability 
of the perfect balancing positions of the automatic balancer. This paper investigates the 
stability of the perfect balancing positions of a three-ball automatic balancer. The 
stability is studied point by point on a parameter plane. The results indicate that the 
three-ball balancer has a larger stable area and hence better performance compared to 
the two-ball balancer. 
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