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Abstract 
The paper describes a motion planning procedure that allows to eliminate or reduce 
the vibratory effects arising on the end-effector of an industrial robot after the 
execution of high-speed movements. The adopted technique employs a mathematical 
model of the manipulator, a particular class of parametric motion profiles and an 
optimization procedure that acts like a motion planner and selects automatically, for 
each degree of freedom of the machine, the motion laws that allow vibration 
reduction. 

INTRODUCTION 

Vibration of the end-effector is a problem that frequently takes place during the 
operation of an industrial robot, in particular during the execution of high-speed 
movements. In many cases the gripper oscillations persist even after the end of the 
motion time (residual vibrations) and therefore they need overtime to be damped. 

It is clear that these vibratory effects are due, for the most part, to the 
compliance of the mechanical transmissions, since the links of the robot can be 
considered substantially rigid. 

A great number of industrial processes can not be carried out if the 
manipulators exhibit a vibratory behaviour: so it is very important to develop motion 
strategies, that allow these machines to execute fast movements with good dynamic 
performances, and high positioning precision. 

The motion planning procedure described in this paper has been developed in 
order to eliminate or to reduce the residual vibrations of a manipulator, without 
augmenting the motion time, nor introducing overtime for vibration damping (clearly 



Giovanni Incerti 

both these solutions reduce the rhythm of production of the industrial plant where the 
robot operates, with obvious economical consequences). 

The proposed technique is based on a suitable choice of the motion profiles 
assigned to the robot arms. As it will be clarified in the following paragraphs, the 
motion of each link is defined through some coefficients that determine the shape of 
the displacement, velocity and acceleration functions; these coefficients can be 
modified without changing the motion time (usually imposed by production 
requirements), nor altering the continuity conditions imposed on the displacement and 
on its time derivatives at the initial an final time instants. 

This calculation procedure can be used if the end-effector doesn’t have to 
follow a pre-defined trajectory inside the workspace and therefore it is well-suited for 
“pick and place” operations, where only the initial and final position of the robot 
gripper are assigned. 

It is important to underline that this technique can be implemented on an actual 
machine with very low costs; namely it is not necessary to modify the mechanical 
structure of the machine, neither to use complex control algorithms for the 
servomotors or additional feedback sensors to measure the vibration amplitude: it is 
only sufficient to modify the reference motion profiles memorized in the robot 
controller to improve the dynamic performances of the manipulator. 

MODEL OF A ROBOT WITH COMPLIANT JOINTS 

As it has been already outlined, the elasticity of a robot manipulator is concentrated 
for the most part, into the mechanical transmission. For example the SCARA robots 
(see Fig. 1) have a slightly compliance in the horizontal plane (the acronym SCARA 
means: Selective Compliance Assembly Robot Arm); in fact the end-effector of the 
robot, if forced, can move slightly in the horizontal plane (the one containing the two 
links), but non in the vertical one. This depends on the structural characteristics of the 
robot and on the torsional elasticity of the Harmonic-Drive (HD) speed reducers [2]. 

It must be considered that a certain level of compliance is deliberately 
introduced in the mechanical transmission between the motors and the robot arms, in 
order to compensate little positioning errors: that happens, for example, when a 
manipulator must insert a cylindrical piece into the corresponding hole: if there is a 
misalignment between the axes of the two parts, the insertion operation can be made 
easier by the robot compliance. 

Fig. 2 shows the transmission of a SCARA robot and its schematization through 
a simple model with lumped parameters: in this model the elastic properties are 
defined by an equivalent torsional stiffness ki and the energy dissipations, due to 
friction effects, are taken into account by introducing a viscous damper, with damping 
constant ci. We will use these parameters to calculate the driving torques of the robot 
actuators. 

Owing to the elasticity of the transmissions, the motion of each link of the 
manipulator is slightly different the motion imposed by the corresponding actuator; 
these effects can be studied through a dynamic analysis of the machine. For this 
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purpose it is necessary to deduce the motion equations of the mechanical system and 
to carry out a numerical integration, in order to calculate the motion of each degree of 
freedom of the manipulator. The calculations will be here presented for a SCARA 
robot, but they can be extended to other types of manipulators. The motion equations 
will be written using the method described in [3]. For the meanings of the symbols, 
see Fig. 1a and Table 1. 
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Figure 1 – a) Scheme of a SCARA robot. b) Bosch Turbo SCARA SR60 robot. 
c) Epson E2C25 SCARA robot. 

 a)           b) 
Figure 2 – The transmission between the motor and the link (a) and its equivalent model (b). 

Symbol Description Value SI Unit 
m1 m2 Links masses 15 12 kg 
JG1 JG2 Links moments of inertia about their centres of mass 0.24 0.11 kg m2 

M End effector mass (gripper + payload) 5 kg 
J End effector moment of inertia about its c.m. 9 ×10−3 kg m2 

l1, l2 Links lengths 0.45 0.35 m 
g1 g2 Centre of mass positions of the links 0.25 0.20 m 
k1 k2 Joints torsional stiffness 12500 10500 Nm/rad 
c1 c2 Joints damping constants 8 6 Nms/rad 
xPi yPi End effector initial position 0.7 0.1 m 
xPf yPf End effector final position − 0.3 0.2 m 

 
Table 1 – Parameters of the SCARA robot used for the numerical simulations. 
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To write the motion equations of the robot it is first necessary to define a vector 
S, containing the geometrical coordinates of the points where the external and inertial 
actions are applied; in our case this vector contains the Cartesian coordinates of the 
points P (end-effector), G1 (centre of mass of the 1st link) and G2 (centre of mass of 
the 2nd link) and the angular coordinates α (absolute position of the 1st link) and 
ϑ = α + β (absolute position of the 2nd link); these angular coordinates are needed for 
taking into consideration the effects of the inertial torques acting on the links. 
Consequently we obtain for the vector S the following expression: 
 
 T

GGGGPP yxyxyx ][ 1122 αϑ=S  (1) 
 
Now let’s introduce the vector of the joint coordinates Q, that contains the angles 
used to define the relative position of each link, that is the position of a link with 
respect the preceding one (see Fig. 1a):  
 
 T][ βα=Q  (2) 
 
If there are external actions applied to the robot, they have to be included in a vector 
Fse; for the case under consideration this vector is null ( }0{=seF ). 

As concern the motor torques applied to joints of the manipulator, their 
analytical expression can be determined using the equivalent scheme illustrated in 
Fig. 2b. Let us denote with the symbols q0i and qi respectively the angular position of 
an actuator and the position of the corresponding link (each actuator is composed by a 
servomotor coupled with a speed reducer); by imposing an equilibrium condition on 
the part inside the dashed rectangle, the driving torque Ti can be calculated as 
 
  2 1,              )()( 00 =−+−= iqqcqqkT iiiiiii &&  (3) 
 
where ki is the equivalent torsional stiffness of the transmission and ci the equivalent 
viscous damping coefficient. In our case Eqs. (3) can be rewritten as  
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where Fq is the vector of the driving actions. 

The inertial properties of the robot can be expressed through the mass matrix 
M, that, for the system under consideration, is defined as 
 
 ])([ 111222 GG JmmJJmmMMdiag +=M  (5) 
 
This is a n×n diagonal matrix, whose dimension n is equal to the number elements of 
contained in the vector S. 
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The position coordinates in the vectors S and Q are related by geometrical 
relationships, that can be rewritten in compact form as: 
 
 )(QSS =  (6) 
 
Consequently the jacobian matrix J is: 
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Now, if we define the following matrices: 
 
 qqse

TTT FFFJFQGQJMJ)QQ,VJMJQM −=+−=== )(),(  ( )( &&&  (8) 
 
the motion equations of the robot can be expressed as: 
 
 qF)QV(Q,Q(Q)MF)G(Q,)QV(Q,Q(Q)M =+⇒=++ &&&&&& }0{  (9) 
 
Solving Eq. (9) with respect toQ&&  we obtain: 
 
 ][1 )QV(Q,(Q)F(Q)MQ q

&&& −= −  (10) 
 
If we know the motion of the actuators, that is the functions α0(t), β0(t) and their time 
derivatives (see the following paragraph for a detailed description of these functions), 
the motion equations (10) can be integrated without particular difficulties, using a 
numerical procedure (for example a Runge-Kutta algorithm with fixed or adaptive 
step size). Thus it is possible to analyse the dynamic behaviour of the system and to 
study the effects of the adopted motion strategy on the residual vibration of the 
end-effector. 

DEFINITION OF THE MOTION PROFILES 

After deducing the motion equations of the manipulator, it is needed to define the 
motion laws for each DOF of the machine. 

We have already stated that such profiles have to be defined in parametric form, 
so that it is possible to modify their shape by changing the numerical values of some 
coefficients, without altering the boundary conditions (i.e. the conditions at the limits 
of the integration interval). 

In the technical literature we can find many classes of motion profiles which 
depend on a set of coefficients: the functions that define these profiles may have a 
single analytic expression, valid for the total motion interval (like the polynomial 
motion laws), or different expressions inside this interval (like the motion laws with a 
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seven segments acceleration profile). In this work we will use a modified version of 
the polynomial motion laws, where the exponents of the various terms may assume 
real (rather than integer) positive values. 

These exponents represent the design parameters, that is the variables of the 
optimization procedure and they must be determined in such a way as to minimize a 
performance index, that will be defined in the next paragraph. 

To define a generic displacement profile y(t), it is firstly necessary to fix some 
boundary conditions, which must be fulfilled by the function itself and by its time 
derivatives up to order m. If we denote with the symbols h and T respectively the 
required displacement and the corresponding motion time, the conditions that are 
usually imposed are: 
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If we use the following expression for y(t): 
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where λj is a real positive number, the kth order time derivative (1 ≤ k ≤ m) is: 
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From Eqs. 12 and 13 we deduce immediately that the conditions (11), pertinent to 
instant t = T, are always fulfilled; the remaining m + 1 conditions (pertinent to instant 
t = 0) can be used to determine the coefficients Cj (j = 0, 1,…,m), that will result 
dependent on parameters λj. These coefficients are the solution of the following linear 
system of equations: 
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For the SCARA manipulator described in the previous paragraph, the arm rotations 
α0(t) and β0(t) can be defined by using Eq. 12; the motion time T is fixed according to 
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the technological and manufacturing requirements of the plant, where the robot is 
installed, and the execution of the movement is performed by moving the two axes of 
the machine simultaneously. 

PERFORMANCE INDEX AND OPTIMIZATION 

During assembly and manipulation operations the tracking of an assigned trajectory is 
not required: therefore the motion profiles of the actuators can be selected with a 
certain degree of freedom, in order to optimize the dynamic performances of the 
manipulator. For example, to eliminate the residual vibrations of the end-effector, it is 
sufficient that the total system energy Etot, at the time instant T is null; if this is not 
possible, we can impose that the value of Etot is reduced to a minimum. In this case 
the residual oscillations will be in any case strongly reduced, even if they will not be 
completely eliminated. The total system energy can be calculated by adding the 
kinetic energy Ekin to the potential elastic energy Epot due to the joint deformability, 
that is: 
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where the position and velocity variables must be calculated at the time instant T. 

The value of Etot, which is our target function, changes when the motion 
profiles are modified; having at our disposal two profiles (one for each robot axis), 
defined in parametric form through the shape coefficients, the this function will 
depend also on these parameters, which will be opportunely selected, to obtain a 
minimum. 

It may be observed that this is a typical problem of non linear mathematical 
programming; for the solution of these problems some efficient algorithms are 
available [5], which allow to determine a local minimum for the selected target 
function. For the case under consideration an optimization procedure has been 
implemented using the conjugate gradient method, available inside a software 
package addressed to the solution of non-linear optimization problems. 

To demonstrate the efficiency of the proposed approach, we show here the 
results of a dynamic analysis of the SCARA robot, using different motion profiles as 
input. Fig. 3 represents the modulus of the end-effector acceleration versus time 
before (Fig. 3a) and after (Fig. 3b) the optimization procedure. 

The calculations were performed for a motion time T = 1 s, using the 
parameters indicated in Table 1 and setting λ1 = λ2 = {3  4  5}T as initial values of the 
shape coefficients. The values of these parameters at the end of the iterative process 
for the search of the minimum were λ1 = {4.072   3.734   2.708} and 
λ2 = {4.512   5.369   6.187}. 

The effects of the reference motion profiles on the residual vibrations can be 
clearly observed by the comparison between the diagrams; as it may be noted, the 
modulus of the acceleration is null for t > T , if the optimized motion laws are used. 
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b) 
Figure 3 – Modulus of the end-effector acceleration before (a) and after (b) the optimization 

procedure. Note the absence of vibrations for t > 1 s. 

CONCLUSIONS 

The work presented in this paper shows that it is theoretically possible to improve the 
performances of a manipulator with non rigid transmission by means of an opportune 
planning of the motion strategy. 

The proposed method is based on a mathematical model that reproduces the 
dynamic behaviour of a robot with elastic transmission. The motion profiles used as 
reference functions for the actuators are easily definable in parametric form, through 
few numerical coefficients that define their shape; for this purpose we can utilize the 
profiles derived by the standard polynomial function. The solution of the optimization 
problem may be obtained by means of extensively tested algorithms, now available 
inside commercial software. The optimization procedure is economical and easy to 
implement on an actual robot, since it requires only a modification of the motion 
profiles memorized in the motion controller of the machine. 
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