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Abstract

This paper shows that the Higher-Order Parabolic Equation (HOPE) ensures the computation
of outdoor propagation at very large angles. The derivation of the HOPE based on the
approximation of a square operator using a Padé expansion with a high order is presented. Its
numerical implementation using a finite difference technique and the alternative directions
technique is investigated. Comparisons with the wide-angle PE show that the HOPE
improves the results at wide angles and at very long range. In contrast, the CPU time rises in
proportion to the Padé order.

INTRODUCTION

Theoretical and experimental studies on long range sound propagation in the low
atmosphere are investigated from few decades. Several complementary methods have
been developed for predicting outdoor propagation. The ray-acoustics allows us to
model realistic scenes. The gaussian beam approach is an alternative to the ray-
approximation, including the diffraction effects. The Fast Field Program (FFP) is
efficient when the meteorological conditions are independent of the range. More
recently, the Euler’s equations have been applied on short ranges to handle rotational
flows. The Parabolic Equation (PE) remains well suited to predict long range sound
propagation. Since the introduction of the PE to the outdoor propagation, many
developments and comparisons with the experiments have been investigated. The PE
has been applied with an atmospheric model to take into account the kinematic
turbulence [3] and its capability to take into account the diffraction by a screen has
been examined [12], [7]. Three-dimensional models have been implemented to
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include the azimuthal diffraction effects [6], [13]. The fast Green’s function method
reduces the CPU time for propagation above the ground [8]. The Wide-Angle
Parabolic Equation (WAPE) has extensively been used for outdoor propagation. It
provides accurate results, including a 40 degrees propagation aperture angle.
However, in some cases a wider angle of propagation is required. For instance, to
predict the sound pressure level on the ground, almost straight to an aircraft, during
take-off or landing. This paper aims to show that the Higher-Order Parabolic
Equation (HOPE) provides the outdoor propagation at very wide angles.

The code PARABOLE based on the WAPE has been developed at ONERA for
the prediction of sound propagation above the ground [9], [11]. Recently, the HOPE
has been implemented in PARABOLE to predict in-duct propagation in the high
frequency range [10].

The derivation of the HOPE is briefly presented. Its numerical implementation
using a finite difference scheme and the alternative directions technique is
investigated. Comparisons between the WAPE and the HOPE are illustrated.

THE HIGHER ORDER PARABOLIC EQUATION

Derivation of the Higher-Order Parabolic Equation

Like the other PEs, the HOPE, based on the wave equation, neglects the back-
scattered field and then approximates a square root operator Q. Let us consider the
two-dimensional Helmholtz equation in heterogeneous atmosphere, with cylindrical
co-ordinates (7, z):

0> 190 97
|:y+;§+az—z+k02N2:|p:O, (1)

where r represents the range of propagation and z the altitude. N =cy/c(r,z) is the
index of refraction, ¢y is a reference sound celerity (cy = 344 m/s) and c(7, z) is the
local sound speed depending on the wind speed and the temperature. ky is a reference
wave number. The acoustic pressure is written in the form p(r,z) = u(r,z)/r"”.

Applying the far-field approximation (kg» >>1), equation (1) becomes
0> 0°
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The linear partial differential [P] and [Q] operators are introduced:

[P]=2 and [0]=[1+ x]" with [x]= {NZ _1+L23_22} &)
or ky oz
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Assuming a weak dependence of N with the » coordinate, the operators [P] and [Q]
commute, and equation (3) is transformed into:

[P +ik, 0P - ik, Ol = 0 (4)

This wave equation exhibits two terms related to the forward and the backward fields.
The parabolic approximation neglects the back-scattering field with respect to the
forward-field, and the wave equation reduces into:

[Pl =ik, [O (5)

Finally, considering an envelop function, #{r, z), with smooth variations with respect
to the phase of the wave, u(r,z) = w(r, z)exp(z’kor), the parabolic equation is:

[Ply = ik, [0 1]y (6)

The principle of the Higher-Order Parabolic Equation is to approximate O with a
Padé expansion of order n. The theoretical background was analysed by Bamberger et
al. [2]. The HOPE has been used by Collins [5] for underwater acoustics in presence
of elastic bottom to take into account scattering effects at very large angles:

a, X

[Q]{Hi“'l; X}O(X”“) ™

The coefficients a;, and b;, are determined in order that the » first derivatives of O
and equation (7) agree when X = 0:

a,,=[2/@n+1)sin*[jz/(2n+1)] (8a)
b,,=cos *[jz/(2n+1)] (8b)
The HOPE reads:

n ) X
[Ply = ik{zl}y/ ©)

al+b, X

From (9), the WAPE proposed by Claerbout [12] is obtained, when n =1, a;,, = 1/2
and b;, = 1/4:

[1+ X /4] Ply =ik, [X /2w (10)
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Error between Q and its approximation using the Padé expansion

Let us consider the difference e,” between the square root operator Q and its
approximation with a Padé expansion:

el(X)=(1+X)" —{HZH:M} (16)

alt+ b_/,nX

Table 1 below summarizes e,” for several values of X and n. An excellent agreement
between the square root operator and the Padé expansion is found, when increasing
the order n. When X > 1 (the radius of convergence of the Padé expansion is greater
than one) the Padé expansion also provides a good approximation. Figure 1 plots e,”
as function of n, when X is fixed to 5. It exhibits an exponential decrease of the error

n
ey .

Table 1 - Differences between the square root operator and the Padé expansion

X x+1)" order n Padé e, x 10’
0.1 1.0488088 1 1.0487804 284
0.5 1.2247449 1 1.2222222 25227
2 1.2247190 259
3 1.2247446 4
0.8 1.3416407 1 1.3333334 83073
2 1.3414634 1773
3 1.3416370 37
1. 1.4142135 1 1.4000001 142134
2 1.4137931 4205
3 1.4142013 123
4 1.4142132 4
5. 2.4494898 1 21111112 | 3383787
2 2.3861384 633514
3 2.4381833 113065
4 2.4474897 20001
5 2.4474897 3531
6 2.4491367 625
7 2.4494739 110
8 2.4494879 19
9 2.4494896 2
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Figure 1 — Error between the square root operator and the Padé expansion as function of the
ordern; X =35.

Numerical implementation

The HOPE is solved using a finite difference method. For compactness, we set for the
HOPE:

[Ply = iko[g L, }//

Discretizing the P operator and using the alternating directions technique, the HOPE
is transformed into a set of n successive PEs. The j’h PE reads:

{1 - ikOArHZn: L, }y’”/” = {1 + ik, Ar(1— g)zn: L, :|Wl+(_/—1)/n
=1

J=1

The first PE, when j = 1, makes use of the known field l// at range 7, and the last one,
when j = n, provides the expected field ¥/'at range r+A4r. The CPU time for the
HOPE is then n-times the CPU time of the WAPE. @is a weighting coefficient of the

L operator at two successive ranges. @ is fixed to 1, providing an implicit finite
difference scheme.

Boundary conditions

The gaussian function is generally used as the starting field, at » = ry, to reduce the
aperture angle of the field, in agreement with the PE approximation. Using the HOPE,
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including a large aperture angle of propagation, a spherical radiation from a point
source above a plane can be introduced. On the ground an impedance condition is
applied. The locally reacting impedance is derived from the model proposed by
Attenborough [1]. In the upper part of the mesh, an artificial attenuation is generally
considered to avoid numerical reflections. A radiation boundary condition derived
from the wave impedance is here implemented. The wave impedance, at z = zyy,y, 1S
derived from the pressure and acoustical velocity, obtained from the solution of a
point source above the ground in homogeneous medium. In comparison with the
absorbing layers, this reduces the mesh size and the CPU time.

APPLICATION OF THE HOPE TO OUTDOOR PROPAGATION

The radiation of a source at the frequency /= 80 Hz, above a sandy ground at height
hs = 10 m, is considered. Figure 2 compares the exact solution, the WAPE and the
HOPE. The plots represent the sound pressure level L(dB) (referenced to 0 decibel at
one meter from the acoustical source) in a vertical plane including the source and the
receiver. Figure 2 shows that the HOPE improves the solution compared to the
WAPE for the wider aperture angles (upper corner on the left-hand side), while the
level remains the same between the WAPE and the HOPE on the ground, at smaller
aperture angles.
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Figure 2 — Sound propagation above a sandy ground

Figure 3 illustrates the sound propagation above a sandy ground in presence of a wind
profile. The source is located at 100 m height and its frequency equals 80 Hz. The
horizontal component of the wind velocity as function of the altitude is given by an
exponential law: v(z) = vy (2/10)*. vy, the velocity at the altitude 10 m, equals 5 m/s.
The sound speed profile is given by: ¢(z) = ¢y + v(z). At the range » = 4 000 m from
the source, the pressure level is reduced with the WAPE, while it remains almost
constant with the HOPE, as expected under downwind configuration. It then appears

that the WAPE may lose its accuracy within a long distance from the source, but not
the HOPE.
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Figure 3 — Sound propagation above a sandy ground in presence of a wind gradient
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SUMMARY

The wide-angle parabolic equation (WAPE) is extensively used for outdoor
propagation. This paper has shown that the Higher-Order Parabolic Equation (HOPE)
is an interesting alternative to the WAPE. It opens up the aperture angle of
propagation and improves the results at very long range. The HOPE is based on the
approximation of a square root operator with a Pad¢ expansion. The CPU time rises
in proportion to the Padé order n, however it remains small taking advantage of the
marching algorithm in the WAPE implementation.
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