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Abstract

With the aim of characterising the vibratory response of rotating shafts, a preliminary model
is adopted from which the expressions of the free and forced responses are reformulated. By
means of selecting a small number of adimensional parameters obtained from the system,
the dynamic response have been characterised, obtaining the orbits described by a point of
the beam in its free response (hypotrochoid) or the expressions of the frequency response
functions.

INTRODUCTION

In some mechanical problems it is sometimes uncertain which hypothesis should be consid-
ered in modelling systems that contain rotating shafts. For example, in the case of railway
dynamics the diversity in the wheelset model ranges from those in which shaft flexion and
rotation are not taken into account, to those which consider flexion but not rotation and those
which implement both effectsl]. In any case, the model limitations cannot be established
from the conclusions associated with advanced applications nor from those based on Beam
Theory presented in the bibliography.

Although there are many models of beams that rotate around a perpendicular axis (ro-
tating blade problem) and of rotating discs that vibrate in a direction parallel to their own
axis (disc brakes), works relating to beams that rotate around their own axis are less frequent.
Brown and Shabana ir2] developed a refined model of this problem which included a gen-
eral method in which, on assuming the beam modes, the formulation of the dynamic response
of the system is obtained.

A more advanced version was recently presented by Sheu and YaBy in fhis
Reference a methodology for obtaining analytically the modal properties of the Rayleigh
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beam was proposed. The number of parameters that defines the problem was reduced using
a set of adimensional ones. Thanks to this advantage, the present study is based on Sheu and
Yang'’s model with the aim of establishing the characteristics of the free and forced response
of this type of system as a function of a more reduced set of parameters.

DYNAMIC MODEL OF THE ROTATING RAYLEIGH BEAM

The dynamic model is based on a general approach on the dynamics of Rayleigh beams,
adapted for the case in which the beam turns around its own axis. The equation of motion
obtained from §] is
. 8% .. 8% . o4
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whereU(y, t) is the transversal displacement at the centre of the sectioR @nd) is the ex-
ternal forces per unit of beam length; both vectors are expressed according to two orthogonal
directions to the beam axis, so that

Uy(y,t) }
U(y,t) = 2
w.?) { Uw(y, 1) @
J is the antisymmetric C-matrix of order 2
0 1
J_[_l O] ©)

pis the volumetric density of the material,is the area of the sectiohjs the second moment
of the beam section areg, is the Young’s modulus of the material arndhe angular velocity
of the beam.

The solution to equatior8f can be expressed as

U(y,t) = Su(y) an(t) 4)
n=0
For then-th term, the equatiorBj can be expressed (omitting sub-indexas:
Mg+wDgq+Kqgq=Q (5)
in which: .

q= { Qu  Qu } (6)
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K= EI/L sT <§;s> dy (9)
Q= /L STFdy (10)

For the case of a pinned-pinned beam, the modal form)iis(
Sn(y) =1 sin (nwy/L) (11)

beingI the 2«2 identity matrix. On solving the integrals that appearingnd defining

_! LA+I(n7r)2 (12)

m=ak L

B (n 7r)4
k=Bl (13)
wn =V k/m (14)
2

i—— (M (15)

2 <)\2 +(n 7r)2)

where) is the beam slenderness, express)nq derived to

d+2dwlg+wiq=Q (16)

FREE RESPONSE

The solution for the free response of the syst€r= 0) is

(1) =2 | Z1| cos ((wn, — dw) t + arg Z1) + | Za| cos ((wy, + dw) t + arg Z) (17)
BI=2\ 2120 sin (wp — dw) t + arg Z,) + | Zo| sin (wn + dw) t + arg Zs)
where )
Z = o [(wn + dw) quo — duwo — @ ((wn + dw) quwo + Guo)] (18)
1 . . )
Zy = Ao [(wn - dw) quo + quwo + 2 ((Wn - dw) quw0 — Quo)] (19)

Gu0r Qw0, Guo @andg,,o are the initial conditions of the-th mode and is the imaginary unit.

Let defineC as follows
(nm)? w

C:dwn:2<)\2+(mr)2)wn (20)
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Figure 1: Orbits described by the centre point of the beam for different values of C: (a) C=0,
(b) C=0.05, (c) C=0.75, (d) C=1.5, (e) C=3, (f) C=30.

It should be observed that this constant only depends on the slenderness and the natural fre-
guency of the non-rotating beam to the rotating speed ratio. Transforming the initial modal
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velocity vector and the time so that
po =w, ' o (21)

8= wn <C+\/C2+1>t (22)

and defining the following parameters which depend only on the initial conditions and on the
constant defined by20)

2 2
Pwo DPuo
S Y (Fra— ) — R P — L E— 23
! \/<q° V(o —C) <q° VT T —C) &)
C 1 Pwo )2 < 2
Y (= ot —220 ) 4 (g 24
(2\/02+1 2> \/(qo NS e weriioc) @Y

C 1 Pwo 2 2
‘" (2\/02+1 +2) \/<q"0_0+\/02+1> " (qwo+C+\/C2 ) (29)
%o Z—arg<(0+\/02 )quo pwo—i(<C+\/02+1>Qwo+puo)> (26)
80:—arg(<—0+v02+1)quo+pwo+i<(—C+\/02+1> QwO_puO)) (27)

equation {6) can be written as

als) = ( (a —b)cos (s — so) + ccos (%52s — ¢p) > (28)

(a —b)sin (s — sg) — csin (%52s — ¢o)

This solution describes the orbits of the beam section centre, which corresponds to the
parametric equation of a hypotrochoid curve. This curve is the trajectory described by a point
P rigidly attached at a distanegfrom the centre of a moving circle of radidswvhich rolls
without slip in the interior of a fixed circumference of radiugwith a > b). ¢¢ is the angle
that forms the radius of the moving circle that passes through point P with the horizontal axis
when the parameter = sy. Note that all the systems with the same value of the constant
C have the same response to the same initial conditions, when the time and initial velocity
conditions have been transformed.

Figure (1) shows the orbits of the centre of the beam sectign=atZ./2 for different
values of the characteristic constartcorresponding to the-th mode, under the following

initial conditions
1 0
QO=<O>7P0=<3> (29)

As can be seen in Figure (1.b), for sm@livalues the response is similar to that of the
non-rotating beam, but with the vibration plane turning. When the valug f increased
(Figure (1.c), (1.d) and (1.e)), the orbit increases its curve radius, evolving towards a circum-
ference not centred on the beam axis (Figure (1.f)) which changes its position very slowly.
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HARMONIC FORCED RESPONSE

In the case of harmonic excitation, from the foliy,t) = Fo(y) cos(wet) is obtained
Q(t) = Qo cos wet, with Qo = [; S(y)TFo(y) dy. In the steady state response the solu-
tionto (6) is

2,2 _ .
q(t) _ 1 Re (( Wy, — Wg zu2162 C;Un > Qo ezwet> (30)

(W2 — w?)? — (W2 C wp)? twe2Cwn  wy, —we

It can be seen that the response between planes appears coupled through the cross term
we2 C' wy,. Deriving (30) twice gives the generalised acceleration. Particularising for an ex-
citation of unitary amplitude in one of the axes, the modal inertances in the excitation axis
Ap (direct response) and in the transversal akis (cross response) are provided. dbe

the excitation frequency to natural frequency ratigw,,. The amplitudes of the inertances

are then

| e0-9)

A= ar—pcer Y
B 20 &3

Ac(§) = ‘ 1_e?_ 20¢) (32)

Figure (2) shows the graphs of these amplitudes as a functi®mahe range [0,7] for values
of C'of 0, 0.05, 0.75, 1.5 and 3. Faf > 0 we can see that the direct inertantg presents an
antiresonance fof = 1 and consequently the cross inertance is bigger. Can be easily proved
that the crossed response is greater than the direct one if the next condition is satisfied

VC?P+1-1<E<V/C?+1+1 (33)

CONCLUSIONS

This work deals with the analysis of the vibratory response of a Rayleigh beam that rotates
around its own principal axis, considering the free and forced response to harmonic excitation.
In both cases a characteristic constant C is identified which depends on the beam slenderness
and the angular velocity to the natural frequency ratio. In the free response the trajectories
of a free point of the beam correspond to a hypotrochoid curve whose basic characteristics
depend exclusively on the characteristic parameter C.

The analysis of the inertances shows a direct relationship between these functions and
the C parameter. For each vibration mode the inertance amplitude has two resonances whose
relative position depends on C. An analysis of the inertances lets us to conclude the existence
of a significant coupling between crossed plane movements in such a way that the response
of the cross FRF may be even greater than the direct response.
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Figure 2: Direct and cross modal inertances

ACKNOWLEDGEMENTS

The authors owe much gratitudeAGLE at theupv for their help in revising this paper. This
Project has been financed through the GoO—MEC—FEDERplanTRA2004-01828YREN.



J. Fayos et al.

References

[1] K. Popp, I. Kaiser, H. Kruse&system dynamics of railway vehicles and traichive of
Applied Mechanics72 (11-12), 949-961 (2003).

[2] M. A. Brown, A. A. ShabanaApplication of multibody methodology to rotating shaft
problems Journal of Sound and VibratioBp4, 439-457 (1997).

[3] G. J. Sheu, S. M. Yandyynamic analysis of a spinning Rayleigh bednternational
Journal of Mechanical Sciencet/, 157-169 (2005).



