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Abstract 
The validation of a modal method which uses a formulation in potential of fluid, with both 
the static pressure term and an appropriate static displacement potential, is presented. The 
validation of the method is performed by a comparison with other different approaches and 
experiments for the low-frequency (LF) vibroacoustic response of a coupled system 
composed of an elastic structure containing an internal acoustic fluid. The internal fluid can 
be either a light fluid (air) or a dense slightly compressible fluid (water). The approaches used 
for validating the modal approach are: a fully analytical approach, a medium-frequency (MF) 
numerical approach using a specific algorithm and normally well-adapted to MF analysis of 
vibroacoustic problems. These approaches are compared to each other and also to a solution 
coming from a commercial code named "I-deas/Rayon". In case of a water-filled cavity, they 
are also compared to measurements. The modal approach uses different formulations. Among 
these formulations, the classical formulation in internal pressure, commonly used and well-
adapted for light fluids like air, is replaced by a formulation in internal displacement potential 
which takes into account the quasi-incompressibility of dense fluids like liquids. This latter 
formulation is the correct formulation because it uses the static displacement potential term. 
Convergence of the method can be accelerated when using the exact solution of the static 
displacement potential instead of a classical expression, for the case of a rectangular plate 
coupled to a parallelepipedic cavity. The comparison between methods was focused on the 
evaluation of the first resonant frequencies of the coupled system, the vibratory response of 
the plate and the acoustic pressure within the cavity in the frequency band [0, 5 000Hz], for 
both cases of air and water. The vibroacoustic system tested experimentally is a rigid 
cylindrical box containing a parallelepipedic cavity entirely filled with water which is defined 
by five infinitely-rigid walls and closed at one end by a clamped elastic homogeneous plate. 
For this system, an analytical solution of the overall vibroacoustic problem can be 
constructed as a reference solution. 
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INTRODUCTION 

In this paper, we make a comparison between methods and experiments for the low-
frequency (LF) vibroacoustic response of a steel clamped elastic rectangular plate 
coupled to a parallelepipedic cavity which is entirely filled with either air or water. A 
modal approach is validated. The modal approach is formulated in internal fluid 
displacement potential. The method needs to introduce both the static pressure term 
(which takes into account the zero-frequency stiffness effect of the fluid) and an 
appropriate static displacement potential (which takes into account the fluid mass 
effect for heavy fluids). Therefore, the method becomes accurate for either gas or 
liquids. 
 

The analyzed frequency band is [0, 5 000Hz]. Within this band the overall 
vibroacoustic system has modal behaviour, which makes the validation of the modal 
method very efficient.  

DESCRIPTION OF THE ANALYZED VIBROACOUSTIC SYSTEM 

The analyzed vibroacoustic system is described on Figure 1 below. It is small and that 
is why it has modal behaviour within the frequency band [0, 5 000Hz]. The plate is 
excited by one point mechanical force and five points (two for the structure and three 
inside fluid) are observed for comparisons. 
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Figure 1 – Geometry of the analyzed vibroacoustic system and location of observation points 
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MODAL METHOD FORMULATED IN DISPLACEMENT 
POTENTIAL 

When the structure is excited by a set of external forces eF , the variational 
formulation of the internal fluid-structure problem, using ( ),u φ  as variables (u  being 

the displacement field of the structure and φ  the internal displacement potential of 

the fluid) with both static pressure 0
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for the structure and 
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for the internal acoustics. 
 

Within LF frequency domain, the coupled problem (1) and (2) above can be 
projected on two separated modal bases: one for the structure in-vacuo (of 
eigenmodes { },  1, , SNβ βϕ ∀ = � ) and the second for the internal acoustics of a 

rigid-walled cavity (of eigenmodes { },  1, , ANα αψ ∀ = � ).  

By using the modal projections: 
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variational formulation (1) and (2) above leads to a linear matrix reduced system of 

dimension ( )2

S AN N× , to be solved:  
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where: F

F

C dSγβγ βρ ϕ ψ
Σ

= �  is the coupling term between structural mode βϕ  and 

acoustic mode γψ , ,S S
γ γλ µ  the squared eigenfrequency and generalyzed mass of 

mode γϕ , ,A A
γ γλ µ  the squared eigenfrequency and generalyzed mass of mode γψ  

and  the Fγ  the generalyzed force of mode γϕ . 

Linear system (3-a) and (3-b) can be put under a symmetric matrix system 
defined as: 
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in which classical damping matrices of structure sC  and of internal acoustics AC  

have been introduced. U  and Φ  are the vectors of unknown generalized 
displacement of structure and unknown generalized internal potential to be computed. 

Classical expression of static displacement potential 

One way to introduce 0φ  term is to use the classical expression given by (7.55)-page 

144 of [1]:  
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0φ , defined above, is not exact because it is truncated on the number of acoustic 

modes retained in the projection. We will see the influence of the modal truncation on 
the convergence of the method in case of a heavy fluid like water. 

Par ticular  case of static displacement potential 

For a rectangular plate coupled to a parallelepipedic cavity, an exact analytical 
solution of  0φ  can be constructed. This solution accelerates the convergence of the 

resonant frequencies of the plate (loaded by the heavy fluid) and accurately improves 
the vibroacoustic response of the system. This solution for 0φ  can be split into two 

terms such that: 
0 1

0 0 0.φ φ φ+=             (6) 
0
0φ  represents the potential of incompressible fluid,  for which an exact 

analytical expression can be constructed explicitly, and 1
0φ  is a particular solution. 

The analytical expressions of these two terms are given in Appendix A of [5]. 
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OTHER METHODS USED FOR THIS PROBLEM 

Analytical solution 

A fully analytical solution of the overall vibroacoustic problem of an elastic 
rectangular plate coupled to a parallelepipedic cavity containing an acoustic fluid 
(light or dense) can be constructed explicitly. One can find this solution is Appendix 
C of [6]. Two simulations were performed using this method: a first one when the 
cavity contains air and a second with water. The results provide the reference solution 
used to test and validate other methods, and particularly the modal approach. 

MF numer ical computation 

A computation using an adapted MF method was performed on the system in order to 
predict the internal noise and vibration levels of the plate within the frequency range 
[100, 5 000Hz]. This method uses a direct approach by finite elements and it is fully 
detailed in [6, 8, 9]. It is normally adapted to MF domain but, in the present case, it 
was also applied with success to a system having a LF dynamic behaviour. The 
method was used for both an air and a water-filled cavity. 

Solution from “ I -deas/Rayon”  code 

“ I-deas/Rayon” code is a commercial code for internal and external vibroacoustic 
applications. It uses a modal approach formulated in  ( ), pγ  (γ  acceleration field of 

structure and p  internal pressure). This formulation is fully described in [10]. 
Solutions from this code were obtained for both air and water in order to finally test 
the accuracy of an existing commercial code on the proposed test case.  

COMPARISON OF METHODS 

Results of vibroacoustic response for  air  

Figure 2 below shows the comparison between methods of the internal pressure at a 
point inside the fluid for an air-filled cavity. Results coming from the modal method 
using the classical ( ),u p  formulation are also compared to other approaches. All the 

methods agree with each other, and ( ),u p  and ( ),u φ  formulations are equivalent for 

air (a light fluid). 

Results for  water  when using a ( ),u p  formulation 

Figure 3 below shows the comparison between methods and experiments of the 
internal pressure at a point inside the fluid for a water-filled cavity. Results coming 
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from the modal method using the classical ( ),u p  formulation and those coming from 

I-deas/Rayon code are not correct compared to measurements, and also to analytical 
solution and MF numerical computation. 
 

Therefore, a correct formulation for modal method with heavy fluids is to use 
the ( ),u φ  formulation presented above. However, the convergence of the modal 

method is very slow (in general) for heavy fluids. 
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Figure 2 – Comparison of acoustic 

pressure levels inside fluid at Point 3, for 
an air-filled cavity. 

Figure 3 – Comparison of acoustic 
pressure levels inside fluid at Point 4, for a 

water-filled cavity. 

Convergence of eigenfrequencies of the plate for  modal method 

Figure 4 below shows the convergence (toward theoretical frequencies) of the first 
eigenfrequencies (six) of the vibroacoustic system “Clamped elastic rectangular plate 
coupled to a water-filled cavity” , with respect to the number of acoustic modes and to 
the expression of the static displacement potential introduced in the modal method. 

As one can see on this figure, the convergence is very slow when using the 
classical expression of 0φ . A perfect convergence of the frequencies needs a large 

number of acoustic modes (> 1500). 
 
Although, convergence of these frequencies can be accelerated accurately when 

using the exact expression 0 1
0 0φ φ+  for the static displacement potential. 
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Figure 4 – Influence of the number of acoustic modes and of expression of static 

displacement potential on convergence of the first eigenfrequencies of  the analyzed 
vibroacoustic system. 

Convergence of vibroacoustic response for  modal method - Overall compar ison 
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Figure 5 – Convergence of acoustic 
pressure levels inside fluid at Point 3, for a 

water-filled cavity. 

Figure 6 – Overall comparison of acoustic 
pressure levels inside fluid at Point 5, for a 

water-filled cavity. 
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Figure 5 above shows the convergence (toward analytical solution) of the acoustic 
pressure within the cavity obtained by modal method, with respect to the number of 
acoustic modes and to the expression used for the static displacement potential. 

As one can see on this figure, the convergence of the modal method is perfectly 
obtained when using the exact expression 0 1

0 0φ φ+  with a small number of acoustic 

modes (only 49). Results coming from modal method when using the classical 
expression of 0φ  with 1500 acoustic modes are also very good (except on the 

evaluation of resonant frequencies). Although with 49 acoustic modes, convergence 
of acoustic response has not yet been obtained. 

 Figure 6 above shows the overall comparison between methods and 
experiments for the internal pressure for another point within the cavity. 

CONCLUSION 

In this paper we have presented the comparison between different approaches (direct 
methods: analytical and MF numerical, and not direct: modal method) on the LF 
vibroacoustic behaviour of a plate coupled to an internal fluid which can be either light (i.e. 
air) or dense slightly compressible (i.e. water). We have shown the difficulty to deal with 
heavy fluids when a modal approach is used. This method needs to introduce additional terms 
for heavy fluids.  
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