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Abstract 

The attenuation of sound propagating through a bubble screen was investigated both 
theoretically and experimentally in this study.  By adding an additional virtual mass force 
into the momentum equation of the bubbly liquid, a modified Helmholtz equation valid for 
the sound propagation in the bubbly liquid at finite gas-volume fraction was reformulated.  
The transmission and reflection coefficients for the sound propagating through a bubble 
screen were derived.  Experimental study was made to verify the accuracy of the theory. 

1. INTRODUCTION 

It has been known for a long time that the speed of sound propagating in the water is 
affected by the presence of the air bubbles. Bubbles of different sizes are produced by 
the wave breaking occurring in deep water and shallow water zones of the oceans. 
The air bubbles of relative small size may be transported by the nearshore current 
from the shallow water region to the deeper water region. Hence, for the propagation 
of sound waves at the nearshore region we require the information of acoustic 
properties in the mixture of water and air bubbles, which is often called bubbly water, 
or in general, bubbly liquid. The sound waves propagating in the bubbly liquid or fog 
was treated by Foldy (1945) as a problem of the multiple scattering of waves by a 
random distribution of isotropic scatterers. Equations for the average value of the 
wave function were derived. Cartensen and Foldy (1947) obtained experimental data 
on the transmission and reflection of sound by screens of bubbles. Van Wijngaarden 
(1968) derived equations for describing one-dimensional unsteady flow in 
bubble-liquid mixtures. In the present study the attenuation of sound propagating 
through a bubble screen at arbitrary gas volume fraction was studied both 
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theoretically and experimentally. By adding an additional virtual mass force to the 
momentum equation of the bubbly liquids, we reformulate a wave equation, which is 
valid for the sound propagation in the bubbly liquids at finite gas volume fraction. 
The transmission and reflection coefficient of the sound propagating through a bubble 
screen was then derived based on this equation and the interface boundary conditions 
between the pure liquid and the bubbly liquid. Experiments were also carried out to 
validate the accuracy of the proposed theory. In the experiments the sound frequency 
was restricted to the range from 10 to 100 kHz due to the restriction of the facilities. 

2. THEORETICAL ANALYSIS 

The local fraction of volume occupied by the gas is given by nR334 πβ = , where R  
denotes the instantaneous radius of the bubbles and n  is their number per unit 
volume. According to Commander and Prosperetti (1989) the continuity equation for 
the bubbly liquids can be expressed as  
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where c  is the sound speed in the liquid and the subscripts m , l  and b  denote 
the physical variables of the bubbly liquid, the pure liquid and the bubbles, 
respectively. If the viscosity effects are ignored, the terms quadratic in mu  are 
assumed to be small and lρβρ )1( −≈m , the momentum equations of the bubbly 
liquids can be approximated by 
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If two spheres of the same size with radius a  move upwards at the same speed 
V and the distance between the bubble centers is h2 , then the kinetic energy of the 

fluid is 2
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lβρ . Biesheuvel and Wijngaarden (1984) 

showed that in the bubbly liquid when the buoyancy equals to the viscous force, then 
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mb uu 3= . The above equation becomes 
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force is taken into account, the previous momentum equation, Eq. (2) is revised as 
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There are three unknowns, namely, mp , mu  and β  contained in Eqs. (1) and (2) or 
(3).  Hence, we require one more equation to solve for the unknowns. This is the 
bubble equation. 

For a bubble in radial motion, an equation accounting the liquid compressibility 
was given by Keller and Miksis (1980) in the form 
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where dtdRR /' =  and lp  is the liquid pressure at the bubble interface, which 

relates to the internal pressure of the bubble, bp , by 
R
R

R
ppb

′
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σ 42
l , where σ  

and µ  denote the surface tension and the dynamic viscosity of the liquid, 
respectively. Equation (4) is nonlinear and difficult to solve. To linearize this equation 
we assume that )](1[)( tatR ε+= , )1( εφ−= ob pp , appo σ2+=  and 

−= mpq p , where a  is the equilibrium radius of the bubble, op  denotes the 
equilibrium pressure inside the bubble, ε  is the perturbed amplitude and is assumed 
to be proportional to tie ω , φ  is the phase shift, p  is the equilibrium pressure in the 
liquid and q  represents the perturbed pressure in the liquid. Substituting the above 
terms into Eq. (4) and after ignoring the higher-order terms, we obtain the expressions 
for ε , 0ω  and b , where 0ω  is the natural frequency and b  is the damping 
constant of the bubble oscillation.  By combining the first law of thermodynamics, 
the state equation of the ideal gas, and the continuity equation for the gas inside the 
bubble, a governing equation for the temperature field can be obtained.  This will in 
turn determine the internal pressure of the bubble and the phase shift φ . 

Taking the time derivative of Eq. (1) and taking the divergence of Eq. (2), we 
get 
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Substituting Eq. (1) into Eq. (5) and assume that qppm =−  is proportional to 

)exp( tiω , then the reduced wave equation or the Helmholtz equation for wave 
propagation in the bubbly liquid is 
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where mk  is the wave number in the bubbly liquid. Similarly, taking time derivative 
of Eq. (1), and taking the divergence of Eq. (3), we have 
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Compared with the previous case, where the bubble interaction was not taken into 
account, Eq. (7) differs from Eq. (6) only in the coefficient of the diffusion term. 

The sound propagation is assumed to be one-dimensional. The bubble screen 
locates at sx ≤≤0 . The amplitudes of the transmitted and reflected sounds can be 
determined from the interface boundary conditions, which require the continuity of 
the pressure and the velocity at 0=x  and sx = . We define the transmission 
coefficient, tC , as the ratio of the intensity of the transmitted sound to that of the 
incident sound and the reflection coefficient, rC , as the ratio of the intensity of the 
reflected sound to that of the incident sound. 

3. EXPERIMENTAL SET-UP 

Measurements were carried out at the Underwater Acoustics Laboratory, Department 
of Hydraulic and Ocean Engineering, National Cheng Kung University. Experimental 
set-up for measuring the sound attenuation in the presence of the bubble screen is 
shown in Fig. 1. Passing air from a gas tank into a rectangular rod-shaped air stone 
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produced the bubble screen. The bubbles vary from 0.05 mm to 2.5 mm in diameter 
with a uniform size distribution. The bubble size was justified by taking the bubble 
flow picture using CCD camera. The CCD camera is DALSA CA-D6 with the speed 
of 955 frames per second and a resolution of 256 pixel × 256 pixel. The hydrophone 
(B&K 8104) contains a piezoelectric sensing element and can be used both as the 
projector and sound signal receiver. The input signal was produced using a function 
generator (HP 33120A). We use this function generator to provide source signals and 
to trigger the oscilloscope (HP 54600B). The signal was then passed to the gating 
system (B&K 4440). The gating system was used to convert the continuous signal 
into a signal pulse with adjustable time duration. The signal pulse from the gating 
system was then amplified using the power amplifier (B&K 2713), prior to drive the 
sound projector. The signal received by the receiver (B&K 8104) was amplified by 
the charge amplifier (B&K 2635). The signal was shown on the oscilloscope and 
stored in the personal computer for further data analysis. 

Gating System
B&K4440

Function
Generator
HP33120A

Oscilloscope
HP54600B

Charge Amplifier
B&K2635

Powe r Amplifier
B&K2713

Position
Coordinate

Air CondenserGas
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B&K8104
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Trigger
Signal

ch2
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Fig. 1.  Experimental set-up for measuring the sound attenuation due to the bubble screen. 

 
The resistance void fraction sensor was used to measure the gas volume fraction 

of the bubbly liquid contained in the bubble screen. The resistance void fraction 
sensor, as shown schematically in Fig. 2, consists of two separated electrodes. Bubbly 
water can flow freely between these two electrodes. The void fraction is computed 
from the increases in resistance between the two electrodes due to the presence of 
bubbles in comparison with bubble-free water. 

Let the specific resistance of the water alone be 2r , the specific resistance of the 
air alone 1r  and the resultant void fraction β , then the specific resistance r  of the 

bubbly flow mixture is given by 2
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Because the resistance of air is much greater than that of the water, one can assume 
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that the resistance in the bubble goes to infinity. The above expression can be 

approximated by 
5.0)(
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β . Thus, the void fraction is directly related to the 

ratio of the resistance of the bubbly water to that of the bubble-free water. From the 
schematic diagram of the circuits for the void fraction sensor shown in Fig. 2, the 
relation between the input voltage, iV , and the measured voltage, oV , on the 
voltmeter can be determined as )/(/ oioA VVVRR −=ω , where AR  represents the 
resistance between the two electrodes and ωR  the variable resistance. For the sake of 
convenience, we can adjust ωR  to have a value, such that when the medium between 
the two electrodes is water alone, oV  is equal to iV5.0 .  To satisfy this, ωR  must 
be equal to AR . Hence, the above equation can be rewritten as )/(/ 2 oio VVVrr −= . 
Substituting this equation into the previous equation, it yields )4/()2( ββ −+⋅= io VV .  
Hence, the void fraction can be determined from this equation as we read the voltage 
shown on the voltmeter. 

Power Source
120V, 60Hz

Oscillator
4kHz, 15V Voltmeter

V
Varible

Resistance

 

Fig. 2.  Schematic diagram of the resistance void fraction sensor. 

4. RESULTS AND DISCUSSION 

There are three different theoretical solutions shown in the figures presented in this 
section. They are obtained by (i) the classical theory, which assume the air-volume 
fraction is very small, (ii) the modified theory in which the void fraction β  is taken 
to be arbitrary, however, the interaction between bubbles is not taken into account, 
and (iii) the present theory, in which the void fraction is taken to be arbitrary and the 
bubble interaction is taken into account. We will begin with small air-volume fraction. 
Fig. 3 shows the comparison of the theoretical solutions and the experimental data for 
the transmission coefficient as sound propagating through a bubble screen of 

%08.0=β , mmR 1= , cms 5.1=  and mmh 5= , where h  denotes the distance 
between the centers of two adjacent bubbles. The value for h  was read out from the 
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bubble picture, which was taken by the CCD camera for the determination of the 
bubble size. We note from Fig. 3 that the three different theories predicted the same 
results and the experimental data coincide with the theoretical results very well. 
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Fig. 3. Comparison of the theoretical solutions and experimental data for a transmission 
coefficient as sound propagating through a bubble screen of β =0.08%, R =1mm, 

s =1.5cm, h =5mm. 

 
As the void fraction β  increases from %08.0  to 11.40%, with the values for 

other variables being unchanged, the corresponding results were shown in Fig. 4. The 
difference in the theoretical results become apparent. The experimental data are in 
better agreement with the present theory. The difference in the theoretical results 
depends on the sound frequency. At the higher frequency range, the difference is 
about 17%, while at the lower frequency range, the difference can be as high as 24%.  
From Figs. 3 and 4, we note that as the void fraction increases, the transmission of 
sound through the bubble screen decreases. Furthermore, the frequency range, in 
which the sound transmission coefficient is small, becomes wider. 
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Fig. 4. Comparison of the theoretical solutions and experimental data for the transmission 
coefficient as sound propagating through a bubble screen of β =11.4%, R =2.5mm, 

s =1.5cm, h =2.6mm. 
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5. CONCLUSIONS 

Based on the study we may conclude the following. 
(1) When the sound propagates through a bubble screen, due to the resonance effect, 
the sound with natural frequency of the bubbles gives the minimum transmission 
coefficient and the maximum reflection coefficient. 
(2) As the air-volume fraction increases, the sound transmission coefficient through 
the bubble screen decreases and the frequency range, in which the sound transmission 
coefficient is small, becomes wider. 
(3) At low gas-volume fraction, our theoretical results and experimental data coincide 
with those obtained from the classical theory. At higher gas-volume fraction, our 
theoretical results agree also with our experimental data very well. However, the 
transmission coefficients obtained from the classical theory showed a large deviation 
from the experimental data. 
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