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Abstract 
Solution for vibration of the viscoelastic layer generated by a load moving along a beam 

inside the layer is presented by means of the Fourier integral. The integrand is a complicated 

function of many parameters and the program in the direct integration approach, to calculate 

the inverse transform, is much time consuming. In this paper it is shown that the inversion of 

the Fourier transform can be obtained using wavelet theory. The computational time for the 

calculation of the displacements based on a coiflets, which are the special kind of wavelets, 

can be reduced substantially in comparison with the direct numerical integration. In order to 

work with a minimum number of parameters that determine the solution of the problem in 

hand, the dimensionless formulation has been introduced. The properties of the solution can 

be investigated quantitatively on the basis of the derived formulae for the displacements using 

MATHEMATICA system. The calculations are conducted on the basis of coiflet filter 

coefficients, which can be found in the existing literature with no need of computing mother 

wavelet in explicit form. 

INTRODUCTION 

It is important to study phenomena related to ground vibrations due to moving train in 

order to envisage ways of reducing their impact on the built environment. To some 

extent the problems related to ground vibrations generated by a train moving on the 

surface have been considered in the papers [1],[2] and [7], but further investigations, 

especially in the case of train moving in a tunnel [5], are needed.  

Consider the two beams connected elastically by continuously distributed 

springs and located in the elastic layer [4]. The distributed harmonic load moving 

along the lower beam generates vibrations on the layer surface. The mathematical 

model consists of the two equations of motion for the beams, Navier’s elastodynamic 

equations for the viscoelastic layer medium and equations for the boundary and 

continuity conditions. The solution is obtained using two Fourier transforms with 



Z. Hryniewicz 

respect to space and time variable, respectively. Solution for the displacements is 

expressed by means of the single Fourier integral and the amplitude spectra are found 

as explicit algebraic expressions. 

BASIC EQUATIONS 

According to Timoshenko beam theory [3], the equations of motion for the elastically 

connected two beams, due to distributed vertical load ∗
P  moving along the lower 

beam with velocity ∗
V , can be written as 
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In the above equations EI is the bending stiffness, ∗
bm  the mass per unit length, ∗χ  

the stiffness per unit length of the springs that connect the beams, a is a characteristic 

length associated with the length of the structure in the 2x -direction, ∗
b2 describes 

the range of distributed load in 1x -direction, t  the time, ∗Ω  the load frequency, sK  

the shear stiffness , mJ  the rotary inertia of mass per unit length of the beam, ∗
jW  the  

vertical displacement for beam, ∗
zzσ  the vertical stress and )(⋅H  denotes Heaviside 

function [4]. 

The displacement )],,(,0),,,([ 3131 txxwtxxu
∗∗∗ =u  generated inside the layer by the 

moving load obeys the Navier’s equation of motion 
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where 
t

dcl ∂
∂+= ∗∗∗ µµµ  and 

t
dcl ∂

∂+= ∗∗∗ λλλ  are the operators used to describe 

the viscoelastic behavior of the medium, ∗ρ is the mass density and operator nabla 

∇ acts in the 31xx  plane. The boundary and interface conditions are as follows: 

),,(),( 112 tdhxwtxW
∗∗∗∗ += , ),,(),( 111 thxwtxW

∗∗∗ = , 0),,( 1 =∗∗
thxu , 

0),,( 1 =+ ∗∗∗
tdhxu ,  0),0,( 1 =σ∗

txzz , 0),0,( 1 =σ∗
txxz , 

 0),,( 1 =++ ∗∗∗∗
tHdhxu , 0),,( 1 =++ ∗∗∗∗

tHdhxw .  (7) 

where ∗
h , and ∗

H  denote upper and lower layer thickness, respectively and ∗
d  is 

distance  between them. 

GENERAL FORM SOLUTION 

The dynamic response of the structure can be found from the system of equations (1), 

(2), (6) and (7). In order to work with the minimum number of parameters that 

determine the solution of the problem in hand, the following dimensionless variables 

and parameters are introduced : 
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The quantities introduced above without an asterisk are the respective dimensionless 

variables. The problem can be solved by application the exponential Fourier 

transforms, over space variable x  and timeτ . Applying the Fourier transforms to 

equations of motion and boundary conditions in dimensionless form one obtains, after 

solution, the transformed dimensionless displacements. The amplitude spectra of 

vibration at the surface can be written as 
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where 
V

f
k

π2−Ω= , fπω 2−= . 

At the layer surface the vertical and horizontal displacements are given by the inverse 

Fourier transforms. The vector function ]ˆ,0,ˆ[),(ˆ 000 wuk =ωu  in the Fourier transform 

domain is given explicitly in the paper [4], by means of five determinants of order 8. 
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To investigate vibrations at the surface one can use the point 0=x . The double 

integral for displacements can be reduced to the single Fourier integral 
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For the case of Timoshenko beam the effect of the rotary inertia of mass and shear 

distortion become more and more important as the beam stiffness, the forced velocity 

and frequency increase [2]. 

CONCEPT OF COIFLET BASED FOURIER INVERSION 

Let ϕ and ψ  be the scaling function and wavelet function, respectively. Applying 

Fourier transform defined as 
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to the refinement equations 
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where the integer 1−L  indicates the support length of ϕ and ψ , 1−=i  and kk qp ,  

are wavelet filter coefficients [8]. The filter functions P  and Q  are defined as 
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One should note, that it is actually immaterial which of the transform operations in 

Eqs. (11) is conducted with the negative exponent, and where the factor π2/1  is 

placed. Applying recursion to Eq. (13.1) and using normalisation condition 1)0(ˆ =ϕ  

leads to the product 
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Among compactly supported orthogonal wavelets a family known as coiflets has a 

number of properties that make it particularly useful in numerical analysis. The 

coiflets constructed by Daubechies as well as that one used in the reference [8] 

correspond to particular integer choice of the first moment α  of ϕ . In this paper we 

use the fact that the first moment of the scaling function  

 ∫
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(called also shift [6]) does not have to be an integer. One of the key properties of 

interest for coiflet bases is the property of vanishing possibly high number moments 

for wavelet function and shifted moments for scaling function, which yield [6]  
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where 0kδ  is the Kronecker symbol. The non-integer value of α  should be used, if 

the integrand of the Fourier integral has singularity for the integer value. Such 

singularity appears for the integrand in Eq. (10). In general, the coiflets have no 

explicit expressions and can be described in terms of the coiflets filter 

coefficients kp .To obtain the inversion of )(ˆ ωf  one must calculate the 

multiresolution coefficients [8]. These coefficients involve inner products with 

wavelet bases and are usually difficult to calculate. Monzon et al.[6] constructed 

coiflets filter coefficients with non-integer shifts, which are suitable for inversion of 

the more complicated functions )(ˆ ωf . Coiflets are meant to maximize both numbers 

of vanishing moments ϕN  and ψN , while their values ( ϕN  and ψN ) remain close to 

each other. The example of coiflet filter coefficients for non-integer α  and 18=L , 

which has the maximal number of vanishing moments, is given in the paper [6] (see 

p. 207, Table 5, case Mb). According to the theory of multiresolution analysis one can 

obtain the formula for the inverse Fourier transform as [8] 
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where 
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The maximum and minimum value of n  in Eq. (18) can be determined once the 

frequency bandwidth ],[ maxmin ωω  has been chosen. The proper range of variableω  

can be found from condition of covering the main lobe of )(ˆ ωf  for which it has a 

significant influence on the characteristic of original function. The term )(τmf  

coincides approximately with )(τf  within the interval ]2,2[ ππ mm−  and becomes 

almost zero outside this interval. Increasing m  leads to the larger range in which the 

inversion agrees with the original function )(τf . To investigate the similitude 

between )(τmf  and )(τf  an error index can be defined as 
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The term )(τmf  can be accepted as inversion when the assumed level of error index is 

not exceeded.  

NUMERICAL RESULTS 

Using Eq. (18) the following formula can be derived for numerical calculations: 
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where [3] 

 =wf ),(ˆ
))/)((1)((

)/)(sin(

2

1000
02

0 ωω
πωω

ω
π

−−Ω=
−Ω−−Ω

−Ω
V

kw
Vbb

VbP
  (22) 

 ∑
−

=

+=
1

0

2)(
L

j

j
i

jn

mn
epP

τ
τ , 

m

n

2

αω += ,  232minmin +−= ϕω Nn m
, 12maxmax −= mn ω , 

  maxmin ωω −= . (23) 

The numerical analysis is performed for 1max =ω , 10=pn , 6=ϕN , 

( 131 −=− ϕNL ). The case of Euler-Bernoulli beams, i.e. 0=∗
TjW  and 0=∗

TP  is 

assumed in further calculations. In general, the value of m  in Eq. (21) should 

increase from 5≥m  to 10≥m ,  with increasing the load velocity V , load frequency 

Ω  and layer thickness h . With increasing parameters Ω,V  or h  the displacements in 

wider range ]2,2[ ππτ mm−∈  should be examined. For 4.0=Ω , 4.0=V   and 2=h  

even )(5 τw  leads to good approximation. For 3>h  one should take )(10 τw  or higher 

term. In order to illustrate the influence of the moving load on the vibration level of 

the layer surface, the parametric study has been performed. The numerical analysis is 

based on the program prepared in MATHEMATICA system. The dimensionless 

material parameters used here can be obtained from the literature [1], [5] and [7]. As 
a basis in calculations, the following values of parameters are taken for the numerical 

analysis: 3.0=ν ,
210923.4 −×=µ ,

310659.2 −×=dµ
, 2=d , 2=H , 2=b , 

21081.1 −×=bm
,

11056.2 −×=χ ,
5

0 108 −×=P
. 

The surface vibration in Fig. 1 is shown, depending on the layer depth h . In general, 

increasing h  leads to decreasing level of surface vibration. For the assumed 

parameter set, two critical layer thickness can be seen: 43.31 =crh  and 27.42 =crh  . 

For layer thickness 1crhh < the biggest amplitude of waves occur for 0=τ . For the 

case 21 crcr hhh << the amplitude of waves moving in front of the load( 0<τ ) is 

much bigger than that behind the load( 0>τ ). For 2crhh >  the amplitude of waves 

moving in front of the load is smaller than that behind the load. 
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Figure 1. Vertical displacement of the layer surface for 4.0=V  and 4.0=Ω , depending on 

the layer depth: a) 2=h , b) 3.3=h , c) 4.3=h , d) 43.3=h , e) 4=h , f) 27.4=h , g) 

5=h , h) 8=h . 
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CONCLUSIONS 

Vibration of the layer generated by the distributed load moving along the beam inside 

the layer is considered using wavelet theory. A starting point to model the railway 

track is the Timoshenko beam theory. Wavelet approach is better than direct 

numerical integration because the execution time required is much smaller and the 

analysis of error is possible. In order to work with the minimum number of 

parameters that determine the solution of the problem in hand, the dimensionless 

formulation has been introduced. The properties of the solution can be investigated 

quantitatively on the basis of the derived formulae, Eqs. (9) and (10), for the 

amplitude spectra and displacements using MATHEMATICA system. Wavelet 

approach seems to be the efficient method to overcome some shortcomings of the 

Fourier transform method. The solution for displacement depends on the considerable 

number of parameters, especially on the upper layer thickness, moving load speed and 

the load frequency. Excluding the critical depths,  the effectiveness of the increase of 

layer thickness for mitigating surface vibration can be seen in presented figures. As a 

result of critical depths, the structures under which the trains move can be subjected 

to large dynamic stresses and the wave radiation effects become important for the 

development of high speed train tracks in tunnels. The coiflet based approach can be 

considered as efficient and powerful technique in solving many structural dynamics 

problems. 
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