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Abstract 
This paper deals with the linear dynamic responses of beams with a flexible support under a 
moving load with a constant speed. The entire system is modeled as a two-span beam and each 
span of the continuous beams is assumed to obey the Euler-Bernoulli beam theory. Considering 
the compatibility requirements on the flexible constraint, the relationships between two 
segments can be obtained. By using a transfer matrix method, the characteristic equation of the 
system can then be determined. The forced responses of the system under a moving load can 
then be obtained through modal expansion theory. Some numerical results are also presented. 

1. INTRODUCTION 

The dynamic responses of beam structures subjected to moving loads or masses have 
been studied extensively. There are numerous references available in the monographs 
of Fryba [1] and most of the cases treat a uniform simply supported beam of a single 
span. The earliest work on the behavior of a single span beam subjected to a constant 
moving load was reported by Timoshenko [2]. Subsequent studies considering the 
effects of an elastic foundation, moving masses, etc. Cai et al. [3] investigated the 
dynamic interactions between the vehicle and guideway of magnetically levitated 
vehicles by modeling the vehicle as a moving force and as a two-degree-of-freedom 
model. 
        There are not so many studies on the dynamic analysis of a multi-span continuous 
beam subjected to moving loads or masses. Lee [4] analyzed the transverse vibration of 
a beam with intermediate point constraints subjected to a moving load by the assumed 
mode method. Wang [5] investigated the response of multi-span Timoshenko beams. 
Yang et al. [6] presented impact formulas for vehicles over continuous beams. 
Chatterjee et al. [7] investigated the dynamic behavior of multi-span continuous 
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bridges under a moving vehicular load which was modeled as a sprung mass. Lin et al. 
[8] analyzed the dynamics of beams with multiple intermediate supports. 

This study presents an analytical method that permits an efficient computation of 
the eigensolutions for beams with an intermediate flexible support. The method is 
based on the use of the Euler-Bernoulli beam theory in each span, and by the 
compatibility requirements at the support, the relationships of the four integration 
constants of the eigenfunctions between two spans of the system can be determined [8, 
10-11]. After the eigensolutions are obtained, the forced responses of the entire system 
under a moving load can then be obtained through modal expansion theory. 

2. THEORETICAL MODEL 

 
An Euler-Bernoulli beam of length L  and with an intermediate flexible support and a 
moving load 1F  with constant speed V is considered as in Fig.1.  
 

 
 
Figure 1: A beam with a flexible intermediate support with stiffness 1S  located at position 1X  
and the lengths of sub-sections are 1L  and 2L  where LLL =+ 21 . The load 1F  moves with 
constant speed V. 
 
It is assumed that the support is located at point 1X  and with stiffness 1S  and 0X  and 

2X  represent end points. The vibration amplitude of the transverse displacement of the 
beam is denoted by ),( TXY . By using the Euler-Bernoulli beam theory [9], the 
equation of motion, assumed to have a uniform cross section, is: 
 

4
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∂

∂  + Aρ 2

2 ),(
T

TXY
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∂  =  )( 1 VTXF −δ ,                            (1) 

where E is Young’s modulus of the material, I is the moment of inertia of the beam 
cross-section, ρ is the density of material, A is the cross-section area of the beam, 

)( VTX −δ  denotes the Dirac delta distribution and T is time. The boundary conditions 
of the beam for a simply-supported case are: 



ICSV13, July 2-6, 2006, Vienna, Austria 

),0( TY  = ),( TLY  = 0,                                                                            (2a) 
                 ),0( TY ′′  = ),( TLY ′′  = 0,                                                                          (2b) 
where the symbol )  ( ′  denotes the derivative with respect to the space coordinate X. 

The “compatibility conditions” enforce continuities of the displacement field, the 
slope, the bending moment and the shear force, respectively, across the support and can 
be expressed: 
 

),( 1)1( TXY −  = ),( 1)2( TXY + ,                                                                    (3a) 

),( 1)1( TXY −′  = ),( 1)2( TXY +′ ,                                                                      (3b) 

                ),( 1)1( TXY −′′  = ),( 1)2( TXY +′′ ,                                                                     (3c) 

),(  1)1( TXY −′′′  = ),( 1)2( TXY +′′′ + ),( 1)1(
1 TXY

EI
S − ,                                            (3d) 

where the symbols +
1X  and −

1X  denote the locations immediately above and below the 
support position 1X  and the sub-index in the parenthesis represents the segments 
(sub-beams) of the system.  

In the above, the following quantities are introduced: 
 

L
Yy = ,

L
Xx = ,

L
Xx i

i = , 
L
L

l 1
1 = , 

L
L

l 2
2 = , 

L
Tt = , 

L
Vv = .    (4a-4g) 

Thus, the governing Eq. (1) and the non-dimensional “compatibility conditions” Eqs. 
(3a~3d) can then be expressed as: 
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),( 1)1( txy −  = ),( 1)2( txy + ,                                                                        (6a) 

),( 1)1( txy −′  = ),( 2)2( txy +′ ,                                                                        (6b) 

),( 1)1( txy −′′  = ),( 1)2( txy +′′ ,                                                                     (6c) 

),( 1)1( txy −′′′  = ),( 1)2( txy +′′′  + ),( 1)1(1 txys − ,                                                (6d) 

where 
EI
LSs

3
1

1 = is the non-dimensional support stiffness. 

 

3. FREE RESPONSE 
Following the procedures in [8] and using the separable solutions: ),()( txy i = 

)()( xw i
te ωj in Eq. (5) lead to the associated eigenvalue problem:  
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)(  )( xw i ′′′′ –
4λ )()( xw i  = 0,        ii xxx <<−1 , 2 ,1=i                             (7a) 

where     4λ = 
EI

AL 23ωρ .                                                                                      (7b) 

The corresponding compatibility conditions across the flexible support lead to: 

                )( 1)1(
−xw  = )( 1)2(

+xw ,                                                                       (8a) 

                )( 1)1(
−′ xw  = )( 1)2(

+′ xw ,                                                                       (8b) 

                )( 1)1(
−′′ xw  = )( 1)2(

+′′ xw ,                                                                       (8c) 

                       )( 1)1(
−′′′ xw  = )( 1)2(

+′′′ xw  + )( 1)1(1
−xws .                                                (8d) 

The general solution of Eq. (7a), for each segment, is: 

)()( xw i = iA )(sin 1−− ixxλ + iB )(cos 1−− ixxλ + iC )(sinh 1−− ixxλ + iD )(cosh 1−− ixxλ  

                               ii xxx <<−1 ,         2,1=i                                                         (9) 

where iA , iB , iC  and iD  are constants associated with the i-th segment ( 2,1=i ). 

These constants in the second segment ( 2A , 2B , 2C  and 2D ) are related to those in the 

first segment ( 1A , 1B , 1C  and 1D ) through the compatibility conditions in Eqs. (8a~ 
8d) and can be expressed as: 
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where 44×T  is the 44×  transfer matrix which depends on the eigenvalue λ  and the 
elements are derived as: 
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41t = 0,   42t = 0,   43t = 1sinh lλ ,   44t = 1cosh lλ .                                          (11a~11p) 
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For the case of a simply-supported beam, after substituting the corresponding 
boundary conditions of Eqs. (2a) and (2b), the following result can be obtained: 
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Substitution of Eq. (10) into Eq. (12a) leads to 
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Thus, the characteristic equation of this system can be obtained from the existence of 

non-trivial solutions of Eq. (13a) and can be expressed explicitly as: 

)]sinh)1(sinhsinsinhsin)1([sin 11111 lllls λλλλλλ −−− + λλλ sinh  sin 2 3 =0.      (14) 

 

The coefficients of the eigenfunctions, )(xwn , are obtained by back substitution into 
Eqs. (13a), (10) and then Eq. (9). 

 

4. FORCED RESPONSES 
 
Using the modal expansion theory, the forced response ),( txy  due to the moving load 
of the constant speed in Eq. (5) can be expressed as: 

∑
=

=
N

k
kk tqxwtxy

1
)()(),( ,                                                        (15) 

where )(xwk  are normalized eigenfunctions of the system and which are obtained from 
the free response analysis (section 3), )(tqk  are generalized coordinates and N is the 
number of terms used to approximate the solution.  
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Substituting Eq.(15) into Eq. (5), multiplying by )(xw j , integrating from 0 to 1 and 
using the othogonality relationship of the eigenfinctions lead to  
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The generalized coordinate )(tqk  are solved from Eq. (16) by the convolution theory: 
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and )0,()(0 xyxy = , )0,()(0 xyxy && =  are initial conditions of the original system. 

The k-th eigenfunctions )(xwk  used in Eq. (16) are from Eq.(9) as: 
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The generalized forcing term )(tQk in Eq.(16) can be written as 
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After the generalized coordinates )(tqk  in Eq. (17) are obtained, the forced response 
),( txy  can then be reconstructed from Eq. (15). 
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5 NUMERICAL RESULTS AND DISCUSSION 

 
In order to show the method used in this article, some numerical examples are 
presented. For a case of a simply-supported beam structure with an intermediate 
flexible support with stiffness N/m 000,461 =S , the beam is square cross-section with 
width 370.0=B  m, height 060.0=H  m, total length  0.1=L m, material density 

3Kg/m  7860=ρ , Young’s modulus 211 N/m  1006.2 ×=E . 
Figure 2 shows the lowest four natural frequencies of the above system as the 

support position 1x  (
L
Xx 1

1 = ) varies. The curves in Fig. 2 are symmetric because of 

the symmetry of the system, i.e., the case for 3.01 =x  is exactly the same as the case 
for 7.01 =x . Figure 3 represents the forced responses (mid-point response, x=0.5) of a 
simply-supported beam with different support positions. The non-dimensional support 
positions used here are  ,1.01 =x 0.3, 0.5, 0.7 and 0.9. The moving load speed is 

critVV ×= 9.0  where critV  is the critical speed and is defined as 
A

EI
L

LvVcrit ρ
π

== = 

27.86 m/sec. From these results, it is observed that the maximum deflections will be 
smaller as the support positions close to the center of the beam.  

All the above examples used are cases for beams of simply-supported boundary 
conditions. The solutions for other types of different boundary conditions can also be 
obtained using the method presented in this research.  
 

 
Figure 2: The lowest four non-dimensional           Figure 3: Forced responses (at the position 5.0=x ) 
 natural frequencies of the constraint beam            for different support positions  ,1.01 =x 0.3, 0.5, 0.7 
 system with support stiffness N/m 000,461 =S      and 0.9. The moving load speed is critVV ×= 9.0  

 as the support position 1x  (
L
Xx 1

1 = ) varies.       and the support stiffness is =1S 46,000 N/m. 
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6. CONCLUSIONS 

An analytical method is developed to present the dynamic responses of a constrained 
simply-supported beam subjected to a traveling load of constant speed. The 
constrained beam system is modeled as a two-span beam and each span of the 
continuous beam is assumed to obey the Euler-Bernoulli beam theory. Considering the 
compatibility requirements on the flexible support, the relationships between these two 
spans can be obtained. By using the analytical transfer matrix method, eigensolutions 
of this constrained system are obtained. The eigenfunctions obtained in this article are 
analytical solutions and forced responses can be obtained by the modal expansion of 
eigenfunctions. The solutions converge very rapidly. Some numerical results are also 
shown and are studied for different load speeds. 
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