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Abstract

Because of fluctuation in leg tension, pitch motion is very effective in fatigue and life safety
of leg elements in tension leg structures (TLSs). In this paper exact solution for pitch
vibration of a TLS interacting with ocean wave is presented. The legs are considered as
elastic springs. The flow is assumed to be irrotational and single-valued velocity potentials
are defined. The effects of radiation and scattering are considered in the boundary value
problem. Because of linear behavior of legs during wave excitation, ignoring coupling effects
with other degrees of freedom, the analytical solution of pitch response has good agreement
with the real behavior of the structure.

INTRODUCTION

The TLS is a kind of compliant-type structure moored in the ocean. It can be a system
for oil exploration in deep water and moored reservoir as well as a wave breaker in
shallow water. The structure is considered as a rigid body having six degrees-of-
freedom, namely surge, sway, heave, roll, pitch and yaw. An analytical solution for
surge motion of tension leg platform (TLP) was proposed and demonstrated in which
the surge motion of a platform with pre-tensioned tethers was calculated [1-3]. In that
study, however, the elasticity of tethers was only implied and the motion of tethers
was also simplified as on-line rigid-body motion proportional to the top platform. An
important point in that study was linearization of the surge motion. But it is obvious
that the structural behavior in the surge motion is highly nonlinear because of large
deformation of TLP in the surge motion degree of freedom (geometric nonlinearity)
and nonlinear drag forces of Morison equation. Therefore the obtained solution is not
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true for the actual engineering application. For pitch degree of freedom the structural
behavior is linear, because there is not geometric nonlinearity in the pitch motion
degree of freedom and drag forces on legs have no vertical component. A continues
model for vertical motion of TLP considering the effect of continues foundation has
been reported [4]. The effect of added mass fluctuation on the pitch response of
tension leg platform has been investigated by using perturbation method both for
discrete and continues models [5-6]. An analytical heave vibration of TLP with
radiation and scattering effects for undamped system has been presented [7]. In this
study the equation of the motion, and the corresponding solution for pitch motion of
the tension leg platform system subjected to sea wave, is derived and solved
analytically. Based on Lee and Lee (1993) results, first the scattering problem is
solved and the results were used to calculate the forcing function for the radiation
problem and then both solutions were used for the solution of the pitch motion. The
structural model is very simple but several complicated factors such as buoyancy,
scattering, radiation and simulated ocean wave load are considered.

GENERAL WAVE THEORY

For the inviscid and incompressible fluid and irrotational flow, a single-valued
velocity potential ¢ can be defined as:
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where U is the flow velocity vector. The velocity potential satisfies the Laplace
equation:
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and the Bernoulli equation
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in the flow field, where p is the pressure and p,, is the water density.

A two-dimensional tension leg platform interacting with a long crested linear wave
propagating in the X-direction is considered here as is shown in Fig. 1. The wave form
and the associated velocity potential are given accordingly as,

n; =—iA exp[~(K,X +iot)] 3-1)
_ Ag cos[K,(z+h)] B .

where A is the wave amplitude, g is the gravitational constant, h is the water depth,
®=27/T is the angular frequency with T as the period, and K, =—-ik, where

k=2m/L is the wave number with L as the wave length. K, satisfies the dispersion
relation
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o’ = gK, tan(K,h) (4)

BOUNDARY VALUE PROBLEM

In the platform system, the motion of the structure induced by the small amplitude
incident wave is assumed to be small. The wave induced structural motion can be
solved from the imposed boundary problem. Because of the linearity of the problem,
the problem can be incorporated into a scattering and a radiation problem. The wave
force calculated from the scattering problem provides the force function in the
radiation problem, and the forced oscillation then generates outgoing waves.

A tension leg platform system is illustrated in Fig. 1, where the flow field is divided
into three regions with two artificial boundaries at Xx=—-b and x =b. In region I, the
total velocity potential ¢, consists of incident waves¢,, scattered waves ¢, and

radiated waves ¢, .

Oy =i i + 0y (%)
In region Il and Ill, the total velocity potential ¢, and ¢,, consists of scattered
waves ¢, and ¢, and radiated waves ¢, and ¢,,,,. The subscript s denotes the
scattering problem and w denotes the radiation (wave making) problem

Oy =y + Oy 6
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All of the wvelocity potentials satisfy the Laplace equation. Furthermore,
Sommerfeld’s radiation condition is satisfied at the infinity of region | and Ill to
secure unique solutions
. |0d 1 0b
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where C,, is the wave celerity.

SCATTERING AND RADIATION PROBLEMS

In the scattering (diffraction) problem, the incident wave is considered to be
diffracted by a fixed structure. The corresponding boundary value problem was also
shown in Fig. 1. In the radiation problem the structure is considered to be forced into
motion by the wave force induced by incident waves and scattered waves. The
corresponding boundary value problem is illustrated in Fig. 1. The displacement of
the dragged pitch motion is given by

0 = Sexp(—imt) (8)
where S is the unknown amplitude of the pitch motion. Applying the method of the
separation of variables, matching the horizontal boundary conditions in each region,
and applying Sommerfeld’s condition to regions | and Il1, the corresponding surface
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elevation and velocity potential of scattering (S) and radiation (W) problems can be
found as follows (Lee and Lee, 1993):

In region I:
2 A9 cos[K (2 +h)] . 9)
= —(K. (Xx+b)—imt
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where the eigenvalues K can be solved from the dispersion equation

with K, =—ik, forj=1; (2j—3)§<th<(j—1)n,for j>2
o’ = gK; tan(K h) (13)

In region Il
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where the eigenvalues K can be solved from the dispersion equation

(j—-Dm .
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The series of four unknowns A, .5 Ay s Auswj a0d Ay, can further be solved

from the following four equations derived from the four boundary conditions on the
two vertical boundaries of region Il. They are, for o0 > 1
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where 0 is the Kronecker delta, and the notations of <Z*Z*>d , <Z*Z*>, and <Z§ > are

defined in Refs [1] and [7]. It is clear that equations (16) and (18) are obtained from
the kinematic boundary conditions, and (17) and (19) from the dynamic boundary
conditions. Equations (16) - (19) can then be solved for the four series of the
unknowns Ay, Aygpi, Ay and Aygin the scattering problem and substituted into

the corresponding equations to calculate the follow properties. However, for the
radiation problem equations (17) and (19) involve the unknown S, and therefore an

additional equation is required to resolve all unknowns Ay, Aypi> Ay and Ay

SIMPLE MODEL FOR MOTION OF THE PLATFORM

The equation of motion of the platform ignoring structural damping of tethers is as
follows
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d’o de
(ﬂ_2+cerE+Kere:Mpy+Mam+Mrd (20)

I 0
where
l,: is the moment of inertia of the platform structure, C,, : is the equivalent viscous

structural damping, K

o - 18 the equivalent stiffness of the platform, M, is the
2
moment wave force acting on pitch direction of the structure, M, = —I, @ is the

moment related to the added mass and M, =-C is the radiation damping

m 1.

dt
moment force from fluid-structure interaction. I, and C,, will be determined in this
paper. The equivalent stiffness of the platform system is presented, when the material
property and the tether dimension are taken into account, as

_ _ AE_2AEb 4 5
Kre_Krt+Krb Krt_szT_m Krb_gpwgb (21)

A, is the total area of the tethers cross section, E is the Young modulus of the tether

material and | is the length of the tether. The wave force moment M can be

obtained through the integration of the total hydrodynamic pressure over the surfaces
of the structure

0 ]
M, =M, exp(-iot) (22)

where
My, = —Fux X + FoxZ (23)

in which F_ is the wave force in z direction, F, is the wave force in X direction, X

is the distance between the center of mass (C.M.) and center of stiffness (C.S.) in X
direction and Zis the distance between the center of mass (C.M.) and center of
stiffness (C.S.) in z direction. In order to determine the vertical and horizontal forces,
one can integrate the hydrodynamic pressure on the bottom and lateral surface of the
structure respectively. After some calculation these forces are determined as

) © - exp(2K ;b) -1
Fo = P'w{ZAule b+ Z(_I)J I(AIIst +A i )COS Ky(h—d) = } (24)
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ADDED MASS AND RADIATION DAMPING

Added mass and radiation damping are obtained as follows
I, =Re(M,) C,=Im(M,) (26)
in which
0 b 27
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The above integral can be calculated considering equations (23), (24) and (25) as
follows

M, =-F,x X +F,,xZ (28)
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b3
Fo, = p{[(h —-d)+ 2A|Ile]b - 3(h—d) +
(29)
e g exp(2K,:b)—1
Z(_I)J 1(Anij +AIIWNj)COSKIIj(h_d) -
=2 Kuj
and
o - sin(K ;h) —sin[K  (h—d)]
I:0x = Z{(_ 1)1 l(Alspj _AIIIst) J K J (30)
=1 j
Now the equation of motion is fully determined as
d*e do
(I0+Ia)dt—2+(Cer+Crp)E+ Ke0=M, (31)
Substituting equation (9) into (30) one obtains
, Co Im(oM ) or .
Defining = = and o, = and considering
2(1, + 1o, 2[1, +Re(M )], I, +1,

equation (26) one obtains
{— [1, +Re(M,)o* |- i(z[l0 +Re(M)Jo,& +Im(M Yoo + Ke,}s =My 32)

or

M3
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(33)

CONCLUSION

The analytical solution of pitch response of TLP was presented for a simple model.
The effects of radiation and scattering were considered in the boundary value
problem. A set of equations to describe the motion of the platform subjected to the
wave-induced pitch motion and the flow-induced drag motion were derived, and the
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corresponding close form analytical solution was presented as an infinite series form
for the dynamic behavior of the platform utilized for the tension leg platform
structural system.
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Figure 1- Illustration for the radiation problem



