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Abstract 
Because of fluctuation in leg tension, pitch motion is very effective in fatigue and life safety 
of leg elements in tension leg structures (TLSs). In this paper exact solution for pitch 
vibration of a TLS interacting with ocean wave is presented. The legs are considered as 
elastic springs. The flow is assumed to be irrotational and single-valued velocity potentials 
are defined. The effects of radiation and scattering are considered in the boundary value 
problem. Because of linear behavior of legs during wave excitation, ignoring coupling effects 
with other degrees of freedom, the analytical solution of pitch response has good agreement 
with the real behavior of the structure.  

INTRODUCTION 

The TLS is a kind of compliant-type structure moored in the ocean. It can be a system 
for oil exploration in deep water and moored reservoir as well as a wave breaker in 
shallow water. The structure is considered as a rigid body having six degrees-of-
freedom, namely surge, sway, heave, roll, pitch and yaw. An analytical solution for 
surge motion of tension leg platform (TLP) was proposed and demonstrated in which 
the surge motion of a platform with pre-tensioned tethers was calculated [1-3]. In that 
study, however, the elasticity of tethers was only implied and the motion of tethers 
was also simplified as on-line rigid-body motion proportional to the top platform. An 
important point in that study was linearization of the surge motion. But it is obvious 
that the structural behavior in the surge motion is highly nonlinear because of large 
deformation of TLP in the surge motion degree of freedom (geometric nonlinearity) 
and nonlinear drag forces of Morison equation. Therefore the obtained solution is not 
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true for the actual engineering application. For pitch degree of freedom the structural 
behavior is linear, because there is not geometric nonlinearity in the pitch motion 
degree of freedom and drag forces on legs have no vertical component. A continues 
model for vertical motion of TLP considering the effect of continues foundation has 
been reported [4]. The effect of added mass fluctuation on the pitch response of 
tension leg platform has been investigated by using perturbation method both for 
discrete and continues models [5-6]. An analytical heave vibration of TLP with 
radiation and scattering effects for undamped system has been presented [7]. In this 
study the equation of the motion, and the corresponding solution for pitch motion of 
the tension leg platform system subjected to sea wave, is derived and solved 
analytically. Based on Lee and Lee (1993) results, first the scattering problem is 
solved and the results were used to calculate the forcing function for the radiation 
problem and then both solutions were used for the solution of the pitch motion. The 
structural model is very simple but several complicated factors such as buoyancy, 
scattering, radiation and simulated ocean wave load are considered. 

GENERAL WAVE THEORY 

For the inviscid and incompressible fluid and irrotational flow, a single-valued 
velocity potentialφ can be defined as:  
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where u is the flow velocity vector. The velocity potential satisfies the Laplace 
equation:  
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and the Bernoulli equation  
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in the flow field, where p is the pressure and wρ  is the water density.  
A two-dimensional tension leg platform interacting with a long crested linear wave 
propagating in the x-direction is considered here as is shown in Fig. 1. The wave form 
and the associated velocity potential are given accordingly as,  
 )](exp[ 1 tixKiAii ω+−−=η                                   (3-1)  
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where iA  is the wave amplitude, g is the gravitational constant, h is the water depth, 
Tπ=ω 2  is the angular frequency with T as the period, and ikK −=1 , where 
Lk π= 2  is the wave number with L as the wave length. 1K  satisfies the dispersion 

relation  
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BOUNDARY VALUE PROBLEM 

In the platform system, the motion of the structure induced by the small amplitude 
incident wave is assumed to be small. The wave induced structural motion can be 
solved from the imposed boundary problem. Because of the linearity of the problem, 
the problem can be incorporated into a scattering and a radiation problem. The wave 
force calculated from the scattering problem provides the force function in the 
radiation problem, and the forced oscillation then generates outgoing waves.  
A tension leg platform system is illustrated in Fig. 1, where the flow field is divided 
into three regions with two artificial boundaries at bx −=  and bx = . In region I, the 
total velocity potential Iφ consists of incident waves iφ , scattered waves Isφ , and 
radiated waves Iwφ .  
 IwIsiI φ+φ+φ=φ                                  (5) 
In region II and III, the total velocity potential IIφ  and IIIφ  consists of scattered 
waves IIsφ  and IIIsφ , and radiated waves IIwφ  and IIIwφ . The subscript s denotes the 
scattering problem and w denotes the radiation (wave making) problem 
 IIwIIsII φ+φ=φ            

IIIwIIIsIII φ+φ=φ  
                                           

  (6) 

All of the velocity potentials satisfy the Laplace equation. Furthermore, 
Sommerfeld’s radiation condition is satisfied at the infinity of region I and III to 
secure unique solutions 
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where wC  is the wave celerity. 

SCATTERING AND RADIATION PROBLEMS 

In the scattering (diffraction) problem, the incident wave is considered to be 
diffracted by a fixed structure. The corresponding boundary value problem was also 
shown in Fig. 1. In the radiation problem the structure is considered to be forced into 
motion by the wave force induced by incident waves and scattered waves. The 
corresponding boundary value problem is illustrated in Fig. 1. The displacement of 
the dragged pitch motion is given by 
 )exp( tiS ω−=θ                                   (8) 
where S is the unknown amplitude of the pitch motion. Applying the method of the 
separation of variables, matching the horizontal boundary conditions in each region, 
and applying Sommerfeld’s condition to regions I and III, the corresponding surface 
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elevation and velocity potential of scattering (s) and radiation (w) problems can be 
found as follows (Lee and Lee, 1993):  
In region I:  
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In region III:  
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where the eigenvalues jK can be solved from the dispersion equation  
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where the eigenvalues IIjK can be solved from the dispersion equation 
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The series of four unknowns wjIsA / , wPjIIsA / , wjIIIsA /  and wNjIIsA /  can further be solved 
from the following four equations derived from the four boundary conditions on the 
two vertical boundaries of region II. They are, for 1≥α    
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where δ  is the Kronecker delta, and the notations of dZZ ** , **ZZ , and oZα  are 
defined in Refs [1] and [7]. It is clear that equations (16) and (18) are obtained from 
the kinematic boundary conditions, and (17) and (19) from the dynamic boundary 
conditions. Equations (16) - (19) can then be solved for the four series of the 
unknowns IsjA , IIsPjA , IIsNjA  and IIIsjA in the scattering problem and substituted into 
the corresponding equations to calculate the follow properties. However, for the 
radiation problem equations (17) and (19) involve the unknown S, and therefore an 
additional equation is required to resolve all unknowns IwjA , IIwPjA , IIwNjA  and IIIwjA .  

SIMPLE MODEL FOR MOTION OF THE PLATFORM 

The equation of motion of the platform ignoring structural damping of tethers is as 
follows   
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where 

0I : is the moment of inertia of the platform structure, erC : is the equivalent viscous 
structural damping, erK : is the equivalent stiffness of the platform, pyM  is the 

moment wave force acting on pitch direction of the structure, 2
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moment force from fluid-structure interaction. aI  and rpC  will be determined in this 
paper. The equivalent stiffness of the platform system is presented, when the material 
property and the tether dimension are taken into account, as  
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tA  is the total area of the tethers cross section, E is the Young modulus of the tether 
material and l is the length of the tether. The wave force moment pyM  can be 
obtained through the integration of the total hydrodynamic pressure over the surfaces 
of the structure   
 )exp(0 tiMM pypy ω−=      (22)  

where 
 ZFXFM wxwzpy ×+×−= 000  (23)  

in which 0
wzF  is the wave force in z direction, 0

wxF  is the wave force in x direction, X  
is the distance between the center of mass (C.M.) and center of stiffness (C.S.) in x 
direction and Z is the distance between the center of mass (C.M.) and center of 
stiffness (C.S.) in z direction. In order to determine the vertical and horizontal forces, 
one can integrate the hydrodynamic pressure on the bottom and lateral surface of the 
structure respectively. After some calculation these forces are determined as 
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ADDED MASS AND RADIATION DAMPING 

Added mass and radiation damping are obtained as follows 
 )Re( 0MI a =   )Im( 0MCrp ω=  (26) 

in which 
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The above integral can be calculated considering equations (23), (24) and (25) as 
follows 
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Now the equation of motion is fully determined as 
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Substituting equation (9) into (30) one obtains  

Defining [ ] ssa

rp

MI
M

II
C

ω+
ω

=
ω+

=ζ
)Re(2

)Im(
)(2 00

0

0

 and 
a

er
s II

K
+

=ω
0

and considering 

equation (26) one obtains 
 [ ] [ ] ) 0

000
2

00 )Im()Re(2)Re( pyers MSKMMIiMI =
⎭
⎬
⎫

+ωω
⎩
⎨
⎧

⎜
⎝
⎛ +ζω+−ω+−  

      
(32) 

or   
 

[ ]( ) [ ]( ) 22
000

22
00

0

)Im()Re(2)Re( ωω+ζω++ω+−
=

MMIMIK

M
S

ser

py  
 
(33) 
 

 

CONCLUSION 

The analytical solution of pitch response of TLP was presented for a simple model. 
The effects of radiation and scattering were considered in the boundary value 
problem. A set of equations to describe the motion of the platform subjected to the 
wave-induced pitch motion and the flow-induced drag motion were derived, and the 
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corresponding close form analytical solution was presented as an infinite series form 
for the dynamic behavior of the platform utilized for the tension leg platform 
structural system.  
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Figure 1-  Illustration for the radiation problem 


