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Abstract
A new approach is presented to discretize an arbitrarily supported linear structure carrying
various lumped attachments. Specifically, the exact natural frequencies and mode shapes of
the linear structure are first used to modify its finite element mass and stiffness matrix so that
the eigensolutions of the discretized system coincide with the exact modes of vibration. This
is achieved by identifying a set of minimum changes in the finite element mass and stiffness
matrices and enforcing certain constraint conditions. Once the updated matrices for the linear
structure are found, the finite element assembling technique is then used to include the lumped
attachments by adding their parameters to the appropriate elements in the modified mass and
stiffness matrices. Numerical experiments show that using only a few elements, the proposed
scheme returns higher natural frequencies that are nearly identical to those obtained by using
a finite element model with a very fine mesh. The new method is easy to apply and efficient
to use. It remains applicable for any combination of attachments, and is valid for a combined
system that is either undamped or damped.

INTRODUCTION

Frequency analysis of combined dynamical systems consisting of a linear structure carrying
any number of lumped attachments has been studied extensively over the years, and hence
only a few selected recent references are given here. Commonly used analytical approaches
include the assumed-modes method [1,2], the Lagrange multipliers formalism [3,4], dynamic
Green’s function approach [5,6], Laplace transform with respect to the spatial variable ap-
proach [7,8], and the analytical-and-numerical-combined method [9,10]. However, due to
their complexity, these methods have been used less than the finite element method.
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In this paper, a modified approach is proposed that can be effectively used to obtain
the natural frequencies of a combined system consisting of a linear structure carrying various
lumped attachments. To obtain the higher natural frequencies of such a system using the
finite element method, one typically refines the mesh of the linear structure until the accuracy
criteria are satisfied. This approach is costly and time consuming, and the slow convergence
can be attributed to the fact that many elements are required to model the linear structure itself
so that the higher natural frequencies of the discretized linear structure match well with the
exact solutions.

To expedite convergence and to obtain sufficiently accurate results with the least cost,
a new scheme is introduced to improve the finite element mass and stiffness matrices of the
linear structure such that the eigendata of the updated finite element model of the linear struc-
ture coincide with the exact eigensolution. Once the system matrices of the linear structure
have been updated, the finite element assembling technique is exploited and used to account
for the lumped attachments.

THEORY

Berman and Nagy [11] developed a method that used test data to update the analytical mass
and stiffness matrices of a structure. The method yields a set of minimum changes in the sys-
tem matrices such that the eigensolutions coincide with the test measurements. In this paper,
the exact eigendata of the linear structure are first used to modify its finite element mass and
stiffness matrices. Once the system matrices of the linear structure have been updated, one
can easily include the lumped attachments by exploiting the finite element assembling tech-
nique [12], and determine the eigenvalues of the combined system by solving a generalized
eigenvalue problem. Berman and Nagy minimized the objective function

JM = ||[M0]−1/2([M ]− [M0])[M0]−1/2||+
N∑

i=1

N∑

j=1

λij

(
[U ]T [M ]U ]− [I]

)
ij

, (1)

where[M0] is the finite element mass matrix,||[A]|| denotes the sum of the squares of all
elements of matrix[A], λij denotes the Lagrange multiplier that is used to enforce the or-
thogonality of the eigenvectors with respect to the updated mass matrix[M ], and[U ] is the
exact modal matrix of the linear structure (of sizeN ×N ), whose elements are obtained from
the exact eigenfunctions of the linear structure. The minimization procedure results in the
following expression for the updated mass matrix

[M ] = [M0] + [M0][U ][m]−1 ([I]− [m]) [m]−1[U ]T [M0], (2)

where[I] is the identity matrix, and[m] = [U ]T [M0][U ], where[U ] is normalized such that
the diagonal elements of[m] are ones. Following the computation of[M ], an updated stiffness
matrix can be determined by minimizing yet another objective function

JK = ||[M ]−1/2([K]− [K0])[M ]−1/2||+
N∑

i=1

N∑

j=1

λKij ([K][U ]− [M ][U ][Λ])ij
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+
N∑

i=1

N∑

j=1

λ0ij

(
[U ]T [K][U ]− [Λ]

)
ij

+ +
N∑

i=1

N∑

j=1

λSij

(
[K]− [K]T

)
ij

, (3)

where[K] and [K0] are the updated and finite element stiffness matrices,[Λ] denotes a di-
agonal matrix consisting of the exact eigenvalues of the linear structure. Here, the Lagrange
multipliers are used to enforce the generalized eigenvalue problem, the orthogonality of the
eigenvectors with respect to the updated stiffness matrix, and the stiffness symmetry. The
updated stiffness matrix is given by

[K] = [K0] + [∆] + [∆]T , (4)

[∆] =
1
2
[M ][U ]( [U ]T [K0][U ] + [Λ] ) [U ]T [M ]− [K0][U ][U ]T [M ]. (5)

Equations (2) and (4) lead to updated mass and stiffness matrices whose eigensolutions
coincide with the exact eigendata of the linear structure. The proposed modification scheme
returns an updated model without iteration, and requires only matrix multiplications. Once
these updated matrices are obtained, the lumped attachments are added to the updated sys-
tem matrices to form the global mass and stiffness matrices, and the natural frequencies of
the combined system are readily obtained by solving the associated generalized eigenvalue
problem.

RESULTS

To validate the proposed discretization scheme, the natural frequencies of a combined sys-
tem consisting of a fixed-free beam carrying various lumped attachments will be considered.
In order to apply Eqs. (2) and (4), matrices[M0], [K0], [U ], and[Λ] are required. The finite
element mass and stiffness matrices,[M0] and [K0], of the beam can be easily obtained by
superimposing the individual element matrices and enforcing the appropriate boundary con-
ditions at the ends. Matrices[U ] and[Λ] can be assembled directly from the exact modes of
vibration once the boundary conditions for the beam are specified. For a fixed-free beam, its
eigenfunctions and eigenvalues are given by

vi(x) =
1√
ρL

[
cosβix− coshβix +

sinβiL− sinhβiL

cosβiL + coshβiL
(sinβix− sinhβix)

]
, (6)

whereβiL satisfies the transcendental equation

cosβiL coshβiL = −1, (7)

and
λi = (βiL)4/(EI/ρL4), (8)

whereE, I, ρ, andL denote the Young’s modulus, the area moment of inertia of the cross
section, the mass per unit length, and the length of the beam, respectively.
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For a beam element, its generalized coordinates consist of the lateral displacement and
the angular rotation (or slope) at the nodes [12]. Hence, if the fixed-free beam is discretized
into n equal finite elements, there is a total ofN = 2n generalized coordinates. Moreover,
to assemble the exact modal matrix,[U ], of the linear structure, the lateral deflection and the
slope at each node must be specified. Fortunately, knowing the exact eigenfunctionsvi(x) of
beam, its slope at any pointx can be easily determined by taking the derivative ofvi(x) with
respect tox, i.e.,

θi(x) =
d

dx
[vi(x)] . (9)

Once the exact lateral displacements and angular rotations at the nodes have been computed,
matrix [U ] can be easily assembled, where the elements of theith column of[U ] are obtained
by evaluating theith eigenfunction and its derivative at the appropriate node locations. Finally,
theith element of the diagonal matrix[Λ] is given byλi.

Updating the stiffness matrix requires only matrix multiplications. Updating the mass
matrix, however, requires the inversion of the matrix[m]. When the linear structure is a simply
supported Euler Bernoulli beam,[m] consists of a diagonal matrix modified by a backward
superdiagonal matrix, whose inverse can be obtained in closed-form. Thus, updating the mass
matrix also involves the product of matrices. For a fixed-free beam, on the other hand,[m]
is fully populated and there is no closed-form expression for its inverse. Nevertheless, the
additional computation needed to invert theN × N matrix is a relatively small price to pay
for the ability to obtain the higher natural frequencies or eigenvalues that are nearly identical
to the exact results, as will be illustrated.

In all the following numerical examples, the first 10 natural frequencies of the com-
bined systems are first obtained by discretizing the linear structure into 100 equal elements.
For all practical purposes, these natural frequencies can be considered exact. To illustrate the
utility of the proposed discretization schemes, the first 10 natural frequencies of a combined
system consisting of a fixed-free beam carrying lumped attachments are obtained by using
the finite element method and the proposed discretization scheme, whereby the beam is dis-
cretized into 5 equal elements, i.e.,n = 5.

Consider a fixed-free beam carrying a damped oscillator (with parametersm = 0.5ρL,
k = 1.0EI/L3 andc = 0.2

√
EIρ/L2) with a rigid body degree of freedom atxa = 0.8L

(see Figure 1), whose governing equations are given by

[M]p̈ + [C]ṗ + [K]p = 0. (10)

Matrices[M], [C], and[K] are the(N + 1) × (N + 1) global mass, damping, and stiffness
matrices of the combined system (the mass and stiffness matrices of the beam have already
been modified using the newly developed scheme), andp = [q y]T , whereq is the vector of
generalized coordinates for the beam, andy denotes the vertical displacement of the damped
oscillator. Because damping is present, the state vector approach is used to determine the
eigenvalues. Introducingz = [ṗ p]T , Eq. (10) becomes

[A]ż− [B]z = 0, (11)
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where matrices[A] and[B] are given by

[A] =
[

[0] [M]
[M] [C]

]
and [B] =

[
[M] [0]
[0] −[K]

]
. (12)

Equation (11) leads to the following2(N + 1)× 2(N + 1) generalized eigenvalue problem

[B]z̄ = µ[A]z̄. (13)

Because the system is damped, the complex eigenvaluesµ rather than the natural frequencies
will be investigated. Table 1 shows the first 10 eigenvalues of the combined system. Note how
well the eigenvalues obtained by using the new approach withn = 5 track those obtained
by using the finite element method withn = 100, illustrating the accuracy of the proposed
scheme. Thus, rather than solving a402×402 generalized eigenvalue problem that is required
of the finite element method when the beam is discretized into 100 equal elements (where
N = 200), one only needs to invert a10× 10 matrix and then solve a generalized eigenvalue
problem of size22 × 22 when using the new method withn = 5 (whereN = 10), which
leads to dramatic computational efficiency.

Consider a uniform fixed-free Euler Bernoulli beam carrying a grounded spring, a
lumped mass, an undamped oscillator with a rigid body degree of freedom, and a grounded
torsional spring atxa1 = 0.2L, xa2 = 0.4L, xa3 = 0.6L, andxa4 = 0.8L, respectively
(see Figure 2). The system parameters arek1 = 0.8EI/L3, m1 = 0.2ρL, k2 = 0.5EI/L3,
m2 = 0.1ρL, andkt = 1.0EI/L. Table 2 shows the first 10 natural frequencies of the com-
bined assembly. The results demonstrate that the proposed discretization scheme withn = 5
yields higher natural frequencies that are nearly identical to those obtained using the finite
element method withn = 100, and that it remains applicable when the beam is carrying
multiple lumped attachments.

In this paper, a new discretization scheme is proposed that can be used to obtain the
eigenvalues of a combined system consisting of a linear structure carrying lumped attach-
ments. For the same number of elements, the proposed scheme returns higher eigenvalues
that are substantially more accurate than those given by the finite element method. The new
discretization algorithm allows one to determine the higher eigenvalues accurately without
having to refine the mesh of the linear structure, as required by the finite element approach.

SUMMARY

A new finite element discretization scheme is proposed that can be used to accurately deter-
mine all of the eigenvalues, especially the higher ones, of a linear structure carrying lumped
attachments. The finite element mass and stiffness matrices of the linear structure are modified
or updated using the exact eigensolutions of the linear structure, such that its finite element
model returns modes of vibration that coincide with the exact eigendata. Once the mass and
stiffness matrices have been updated, the finite element assembling technique is exploited to
include the lumped attachments. Numerical experiments show that with only a few elements,
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the newly developed discretization scheme returns higher eigenvalues that are nearly identical
to those obtained by using a finite element model with a very fine mesh. The new method is
easy to apply and efficient to use. It remains applicable for any combination of attachments,
and is valid for a combined system that is either undamped or damped.
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µi FEM, n = 100 FEM, n = 5 New Scheme,n = 5
µ1 -1.374e-01+j1.293e+00 -1.374e-01+j1.293e+00 -1.374e-01+j1.293e+00
µ2 -2.729e-01+j3.815e+00 -2.729e-01+j3.815e+00 -2.729e-01+j3.815e+00
µ3 -1.992e-03+j2.204e+01 -1.994e-03+j2.205e+01 -1.992e-03+j2.204e+01
µ4 -6.247e-02+j6.170e+01 -6.356e-02+j6.192e+01 -6.247e-02+j6.170e+01
µ5 -1.655e-01+j1.209e+02 -1.744e-01+j1.223e+02 -1.655e-01+j1.209e+02
µ6 -1.443e-01+j1.999e+02 -1.487e-01+j2.030e+02 -1.443e-01+j1.999e+02
µ7 -3.727e-02+j2.986e+02 -3.156e-02+j3.373e+02 -3.727e-02+j2.986e+02
µ8 -5.668e-03+j4.170e+02 -1.039e-02+j4.933e+02 -5.668e-03+j4.170e+02
µ9 -1.018e-01+j5.552e+02 -1.079e-01+j7.153e+02 -1.018e-01+j5.552e+02
µ10 -1.965e-01+j7.131e+02 -1.021e-01+j1.016e+03 -1.965e-01+j7.131e+02

Table 1. The first 10 eigenvalues of a uniform fixed-free Euler Bernoulli beam carrying a
damped oscillator with a rigid body degree of freedom atxa = 0.8L. The oscillator param-
eters arem = 0.5ρL, c = 0.2

√
EIρ/L2 andk = 1.0EI/L3. All of the eigenvalues are

normalized by dividing by
√

EI/(ρL4).

ωi FEM, n = 100 FEM, n = 5 New Scheme,n = 5
ω1 2.196e+00 2.196e+00 2.196e+00
ω2 4.269e+00 4.269e+00 4.275e+00
ω3 2.017e+01 2.018e+01 2.018e+01
ω4 5.834e+01 5.851e+01 5.836e+01
ω5 1.178e+02 1.191e+02 1.178e+02
ω6 1.802e+02 1.822e+02 1.804e+02
ω7 2.986e+02 3.370e+02 2.986e+02
ω8 3.864e+02 4.683e+02 3.877e+02
ω9 5.350e+02 6.862e+02 5.363e+02
ω10 7.002e+02 1.015e+03 7.018e+02

Table 2. The first 10 natural frequencies of a uniform fixed-free Euler Bernoulli beam carrying
a grounded translational spring, a lumped mass, an undamped oscillator with a rigid body
degree of freedom, and a grounded torsional spring atxa1 = 0.2L, xa2 = 0.4L, xa3 = 0.6L

andxa4 = 0.8L, respectively. The system parameters arek1 = 0.8EI/L3, m1 = 0.2ρL,
k2 = 0.5EI/L3, m2 = 0.1ρL, andkt = 1.0EI/L.
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Figure 1: A fixed-free beam carrying a damped oscillator with a rigid body degree of freedom
atxa.
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Figure 2: A fixed-free beam carrying a grounded translational spring, a lumped mass, an
undamped oscillator with a rigid body degree of freedom, and a grounded torsional spring at
xa1, xa2, xa3, andxa4, respectively.


