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Abstract
The Variational Theory of Complex Rays (VTCR) is an approach that was developed in order to calculate 
the vibrations of slightly damped elastic structures in the medium-frequency range (Ladevèze 1996). In this 
paper, we extend it to acoustic problems with infinite boundary condition. Performance results obtained for 
two-dimensional and three dimensional Helmholtz problems highlight the advantages of the method, which 
yields  a  high  accuracy  with  a  smaller  computational  effort  than  the  finite  element  method.  Therefore, 
computation at higher frequencies can be reached.

INTRODUCTION

The standard Galerkin finite element method (FEM) and the boundary element method (BEM) are 
the most commonly used prediction methods for solving structural and acoustic problems. However 
these  technics  require  many  degrees  of  freedom  as  the  (fastly)  oscillating  solutions  are 
approximated by continuous, piecewise polynomial functions.  The size of the models obtained 
practically  restricts  the applicability  of  these prediction techniques to  the low-frequency range. 
Furthermore, the pollution effect (Ihlenburg and Babuska 1995, Deraemaeker et al. 1999) avoid the 
FEM having a robust performance with respect to the wavenumber. Indeed, when the wavenumber 
is increased and a fixed level of accuracy is desired, the standard FEM requires increasing the 
number of degrees of freedom appropriately.
     Different  approaches  have  been  developed  in  order  to  circumvent  this  problem.  These 
approaches include predefined reduced bases (Soize 1998), the Galerkin/least-squares FEM (Harari
and Hughes 1992), the partition of unity method (Melenk and Babuska 1996), the Generalized FEM 
(Strouboulis et al. 2000), the residual-free bubbles (Franca et al. 1997), the ultra weak variational 
method (Cessenat and Despres 1998), the discontinuous enrichment method (Farhat et al. 2001) and 
the wave boundary element method (Perrey-Debain et al. 2003). However, these methods operate at 
the level of the elements, whose number must be large to represent the dynamic behavior properly. 
Therefore, these techniques are essentially limited to the low-frequency range. Trefftz approaches 
has  also  been  developed  (Desmet  et  al.  2001)  but  don't  take  into  account  the  multiple  scales 
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appearing  in  the  shape  functions  (which  are  waves  which  satisfy  the  governing  differential 
equations exactly), and therefore lead to long computation times and are limited to simple geometry 
examples.

Other approaches were proposed for the high frequency regimes. Statistical Energy Analysis 
(SEA) (Lyon and Maidanik 1962) involves the description of the energy exchanged among various 
systems and yields the dynamic response of each system averaged over time and space. However, 
the SEA, which is characterized by a single energy level, cannot provide the spatial variation of the 
response within each system. Extensions of the SEA have been developed (Belov and Ryback 1975, 
Ichchou et al. 1997, Langley 1992, Lase et al. 1994, Langley and Cotoni 2004), but  still require 
additional information (e.g. coupling loss factor, energy reflection coefficient, energy transmission 
coefficient...)  in  order  to  yield  predictive  results  and,  consequently,  can  compute  predictive 
solutions only for specific geometries, such as bars or beams.

THE  VTCR

The  Variational  Theory  of  Complex  Rays  (VTCR)  was  proposed  in  Ladevèze  1996  and  in 
Ladevèze and Arnaud 2000 as a predictive tool for the prediction of vibration problems in the 
medium frequency range. Its fundamental aspects are described in Ladevèze and al. 1999 and in 
Riou and al. 2004.

The first characteristic feature of the VTCR is the use of a new mixed variational formulation 
of the problem, which was developed so that the approximations within the substructures can be 
independent of one another. Therefore, it  is not necessary for these approximations to satisfy a 
priori  compatibility  and equilibrium conditions  at  the interfaces between substructures.  Instead, 
these conditions are incorporated into the variational formulation.

The  second  feature  which  characterizes  the  VTCR  is  the  introduction  of  two-scale 
approximations  with  a  strong  mechanical  meaning:  the  solution  is  assumed  to  be   properly 
described locally as a wave band which is the superposition of an infinite number of propagative 
and evanescent waves. Each wave associated with a substructure  verifies the governing equation 
and the constitutive law over the substructure's domain. All wave directions are taken into account. 
The waves constitute two-scales approximations. The slowly varying scale (amplitude of the waves) 
alone  is  discretized.  The  rapidly  varying  scale  (phase  of  the  waves)  is  taken  into  account 
analytically. The unknowns are discretized amplitudes of the slowly varying parts of the solution 
with relatively long wavelengths. Therefore, no refined discretization is needed and the approximate 
solution is obtained by a small, computationally efficient model compared to that of the FEM or 
BEM.

Numerous examples have shown the effectiveness of this approach in terms of convergence 
rate and computational complexity. Figure 1 shows  the comparison between the VTCR and the 
FEM solutions on a plate structure.  The VTCR solution has been obtained with 60 degrees of 
freedom (dofs). The FEM solution used 1225 dofs (10 dofs per wavelength).This figure shows that, 
for a given level of accuracy, the VTCR requires very less dofs. This is due to the fact that only the 
slowly varying scale is discretised.
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ACOUSTIC PROBLEMS

For an acoustic problem, the boundary value problem (BVP) to solve on =1∪2  is
Find u∈H1  such that

 pk2 p=0  in 
p=pp  on ∂p
v=vp  on ∂v
p1=p2  on 1∩2

v1v2=0  on 1∩2

where v= i

∂ p
∂ n  is the velocity, and ∂p  (resp. ∂v ) is the part on the boundary where the 

pression pp  (resp. velocity v p ) is prescribed. This BVP is transformed to the equivalent variational 
problem : 

Imag ∑e=1,2
∫
∂ pe

pe−pepve
∗ds∑

e=1,2
∫
∂ve

 peve−vep
∗ds

 1
2 ∫1∩2

p1−p2 v1− v2
∗
 p1 p2v1v2∗=0  ∀ pe∈Se ,ad

where ∗  is the complex conjuguate and Se, ad   the space of functions that satisfy  pk2 p=0  in 
e .  This  variational  formulation  can  easily  be  extended  to  structures  with  more  than  two 
substructures (Ladevèze and Arnaud 2000).

The solution is searched in this way: px =∫ pe i k .x d  , where x  is the position vector 

Figure 1 - Comparison between the FEM (1225 dofs) and the VTCR (60 dofs).
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and   is direction of propagation of the wave. The unknown p  is discretized and the discrete 
approximation of the solution is written as

 px = j∫ j

 j1 p j1/2 e
i k .x d = j p  j1/2∫ j

 j1 e i k .x d 

Only  the  unknown  p j1/2  have  to  be  computed.  The  wave  band  ∫ j

 j1 ei k .x d  ,  which 

corresponds to the superposition of all the waves travelling in the direction [ j ; j1] , is explicitely 
taken into account in the computation.

Many examples have been computed to assess the performance of the VTCR. One of them is 
an acoustic cavity of a car on which a given velocity has been prescribed on one boundary. Figure 2 
shows the solution to obtained and the comparison between the VTCR  and the FEM. Regarding the 
number  of  degrees  of  freedom to  use  to  have  an  accurate  solution,  the  VTCR  yields  a  very 
interesting convergence rate.

The extension of the VTCR to infinite problems is easily taken into account. The infinite condition 
of Sommerfeld can be approximated by a finite condition on an absorbing boundary. To this end, 
the absorbing conditions given in Bayliss et al. 1982 can be used (among others), and the local 

equation to satisfy v= i
i k p− p

2 r is taken into account in the variational formulation by the 

new quantity ∫ pv− i
i k p− p

2 r
∗

ds .

Figure 3 shows the scattering of a circle sumbitted to an incident wave (this problem has an 
exact analytical solution). The solution given by the VTCR (136 dofs) is on the right and is very 
similar the the exact solution.

Figure 2 - Comparison between the FEM and the VTCR on an acoustic car cavity example.
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CONCLUSIONS

The approach proposed here,  called the "Variational  Theory of  Complex Rays",  was originally 
introduced in order to calculate the vibrations of slightly damped elastic structures in the medium-
frequency range. It is a general multiscale approach with a strong mechanical basis. This paper 
emphasizes the extension of this theory to the analysis of acoustic cavities, with finite or infinite 
boundaries.  The  key  points  (introduction  of  evanescent  waves  in  the  shape  functions  space, 
conditioning of the matrices, p or h vision, extension to 3-D problems) will be discussed.
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