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Abstract 
Estimation of damping properties is one of most important tasks in structural 
dynamics. Despite noticeable development of finite element methods results of the 
modeling can be inaccurate especially for complex structures at comparatively high 
frequencies. Therefore experimental techniques are widely employed for estimation 
of energy dissipation in a structure.  

Analysis of output signals measured on the structure is widely used. The 
consecutive post- process of responses is performed either in time or frequency 
domain. Unfortunately accuracy of calculations is impaired by noise components of 
the recorded signals. 

It is proposed method to calculate logarithmic decrement corresponding to 
natural frequency of a structure. The method is based on Morlet wavelet transform of 
a measured decay curve. The derived formula enables to extract logarithmic 
decrement without complex signal processing and computational procedures. The 
technique can be employed for decay curve containing several natural frequencies. 
The proposed procedure should be applied to every natural frequency apart. Details of 
the signal processing are described. Logarithmic decrement of the pipe’s natural 
mode is calculated as a demonstration of the method. 

The technique is not sensitive to noise component presented in a measured 
signal. It provides high accuracy in detection of damping properties of a structure 
even at not satisfactory signal-to-noise ratio. The method is appropriate for modal 
testing of different structures that can be found in engineering practice. 
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INTRODUCTION 

Some average (integral) estimation of dissipative properties of solid structures or 
elements containing fluid/gas is needed for many engineering tasks. Logarithmic 
decrement is related to natural logarithm of amplitude ratio for two consecutive 
oscillations in a decay curve [1]. It is conventionally utilized to describe rate of decay 
for free oscillations. 

In accordance to Basil’s hypothesis every natural frequency has its unique 
logarithmic decrement. A logarithmic decrement can be extracted from data analysis 
either in time domain or frequency domain [1], [2]. Impact hammer method with 
analysis of the decay curve or accelerance functions are commonly used in 
engineering practice. 

 These methods are very sensitive to quality of initial data. A source signal 
may contain many noise components or some probable natural frequencies have very 
close frequencies. Such procedures like signal windowing, truncation, coherence 
analysis have been proposed to refine the original data. However if a structure itself 
has a rich spectrum of natural frequencies, procedure of natural modes and shapes 
extraction looks implicit.  

Another robust method would be useful for many practical applications. The 
technique based on wavelet transform is proposed as an alternative to the 
conventional procedures. 

IMPLEMENTATION OF WAVELET TRANSFORM TO DAMPING 
PROPERTIES ANALYSIS 

Such features of wavelet transform like time localization, easy scaling and shift make 
it attractive for implementation in a signal processing. A measured signal can be 
represented by a set of wavelets gathered from mother wavelet by scaling or shift 
procedure [3],[4]: 
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where ψψψψ(t) is a wavelet transform of the measured signal, a- scale factor, b- time 
location, ψψψψ0(t ) is the mother wavelet. Multiplier a-0.5  is introduced in expression (1) 
to normalize all wavelet functions.  

Basic idea of the wavelet transform states that a signal  x(t) can be represented 
as a sum of scaled mother functions [3],[4]: 
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As a measurement is performed within limited time interval and a, b∈∈∈∈ R  (R is 
real number domain),  a≠≠≠≠0: 
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In signal processing different types of the mother wavelet can be utilized. For 

this case Morlet wavelet is chosen due to many attractive features which are 
discussed in scientific literature.  It is described as follows [5]: 
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where Bf is the frequency bandwidth, cf is the wavelet central frequency. Morlet 

wavelet is well localized in real and Fourier space and represents a sinusoidal 
Gaussian- based function. However there is a balance between frequency and time 
resolution. With cf increase frequency resolution gets higher but time localization 

goes down. Morlet wavelet function provides the best combination between 
frequency and time resolution [8]. Time resolution is increased as frequencies become 
higher. 

Let us consider continuous wavelet transform of periodic signal  (((( )))) tcostх ωωωω====  
with Morlet mother wavelet: 
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Utilizing the Euler’s formula and representation of the cosine function product 

by the cosine sum, one can get: 
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It is possible to determine integrals 3I  and 4I  taking use of relation [6]: 



A. Prokofiev, V. Lenchine, and V. Shakhmatov 

 

∫∫∫∫
∞∞∞∞

∞∞∞∞−−−−

−−−−
−−−− ==== 2

2

22
4)cos( a

m
хa e

a
dхmхe

ππππ
. 

 
The integrals are: 
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Thus integral 1I  is expressed as follows: 
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The similar technique can be employed to calculation of integral 2I . Also the next 
property should be taken into account: 
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The second integral takes form: 
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Formulas (3), (4), (5) enable to get analytical expression for the wavelet 

transform coefficients. It should be noted that the coefficients are complex numbers.  
Thus wavelet spectrum (((( ))))b,aС  can be represented by the amplitude (((( ))))b,aС  and 

phase  (((( ))))b,aСarg  surfaces in 3D graph. In this paper the wave spectrum is shown by 

projections to plane(((( ))))b,a . It is possible to track change of amplitude (((( ))))b,aС  at 

different scale and time by iso- lines. 
The modulus for Morlet wavelet can be gathered as follows: 
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Taking into account formulas (3)~(5) one can get from (6): 
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In conventional wavelet algorithm it is supposed that time intervals have a 

unit spacing. This point is kept here in effect too. Then it is convenient to take use of 
normalized formulas: 
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where fd is the sampling frequency of an original analog signal. 

Projection of the amplitude surface 
(((( ))))b,aС  of a periodic signal based on a 

Morlet wavelet represents a stripe of almost 
constant intensity that is parallel to the time 
axis. It is practically not sensitive to b 
parameter change. Section of the amplitude 
surface by plane constb ==== is shown in Fig.1. 
The line in Fig.1 has clear maximum at 
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Expression (8) is an approximate ratio between scale of the Morlet transform 

and frequency resolution. 
Modulus of the wavelet coefficient is a periodic function since expression (7) 

has member ωωωωb2cos2  under the square root sign. If  
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comparison with the first term under the square root: 
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Instead of expression (8) it is possible to derive more precise formula for scale 

factor 0a by taking derivative 
da

Cd
 that must equal zero: 

 
  

Fig.1 Modulus of coefficient C 
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represented in another form:  
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At 1ff cB ======== , k becomes equal 1.025, k value reaches 1.011 at 1f B ====  and 

5.1====cf . Maximum amplitude of C coefficient can be obtained by substitution of (8) 

into (9): 
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The error of (((( ))))b,aCmax  estimation by expression (11) does not exceed 0.4 %. 

If the periodic function has amplitude that is distinguished from unit (for 
example X), the modulus of the wavelet transform coefficient calculated by formula 
(7) or (9) must be multiplied by X. 

CONTINUOUS WAVELET TRANSFORM OF A DECAY CURVE 

Let us consider wavelet transform of decay curve. This function has zero values at 
0t <<<< : 
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Table integrals in reference [7] allow to calculate integral I : 
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The amplitude of the wavelet transform coefficient can be found from formulas (12) 
and (13): 
 
                                                  (((( )))) IBb,aС ⋅⋅⋅⋅==== ,                                                     (14) 
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Fig.2 represents sections of the 

wavelet coefficient amplitude surface by 
planes constb ====  at 1ff cB ======== , 2,0====ωωωω , 

003,0====αααα . One can see shape similarity of 
Fig.1 and 2. However with increase of 
parameter b  the amplitude of all points of 
the last surface monotonically decreases (in 
a limit - up to zero). 

Section of the amplitude surface by plane consta ====  at the same modeling 
parameters as above is represented in Fig.3. The curve has clear maximum. At the 
scale factor a  determined by expression (10) the maxima is observed at 45b0 ==== . 

Incremental trend of the considered curve at small b numbers can be explained by the 
fact that the wavelet function approaches boundary 0t ====  (corresponds to 0b ==== ) and 
begins to spread out of the boundary 0t >>>> , where the original signal equals zero. 
With a  reduction the value b , at which the maximum of amplitude of the wavelet 
coefficient for considered cross-section takes place, decreases.  

 
               a)                           b) 
Fig.2 Modulus of coefficient C at  
a) b=50, b) b=200 
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In the further analysis we shall consider only decreasing part of cross-section of 
the amplitude surface by plane consta ==== since this part of the graph is a matter of 
interest to calculate logarithmic decrement αααα . 

Part of the wavelet transform which corresponds to decay of free oscillations 
has coefficients 0bb >>>> , where (((( ))))b,aС  reaches maximum at time location 0b ,  

0aa ==== , where  0a  is determined from expression (10). General formula (14) for the 

amplitude of the wavelet coefficient can be simplified for these parameters a  and b . 
The approximate relation is: 
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It should be noted that Z does not depend on b  if 

consta0 ==== . Deriving equation (15), it is taken 

into account that at 0aa ====  and 0bb >>>> : 

0
a
f2 c ≈≈≈≈−−−− ωωωωππππ

, and modulus of the second 

exponential term in equation (13) is significantly 
less than the second one. The calculation error by 
formula (15) does not exceed 12%.  

Analysis of equation (15) discovers that at 
constaa 0 ========  the section of the amplitude 

surface at 0bb >>>>  is an exponentially decreasing 

curve. Exponential degree is a negative of the 
product of logarithmic decrement and wavelet 
time location. 

CALCULATION OF THE LOGARITHMIC DECREMENT BY 
AMPLITUDE OF THE WAVELET COEFFICIENT 

To calculate logarithmic decrement from amplitude of the wavelet coefficient let us 
consider system of 2 equations: 
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Fig.3 Modulus of coefficient C depending 
on parameter b 
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As decaying part of the wavelet transform is considered at 01 bb >>>>  and 02 bb >>>> , 

solution of equations (16) can be found as follows: 
 

                                        
(((( ))))
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12 b,aC
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1
−−−−
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Expression (17) is invariant to the time location. If the measured signal has time 

shift b’, solution (17) is the same. However it is necessary to point out that equation 
(17) is valid at   bbb 0 ′′′′++++>>>>  in this case. 

The solution for logarithmic decrement can be expanded for discrete wavelet 
transform. Thus it is possible to extract logarithmic decrement from measured decay 
curve performing next operations. 

1. Discrete wavelet transform with Morlet mother function should be executed. 
2. Detect value of the wavelet scale factor  

0a  by shape of the amplitude surface of 

the wavelet coefficient. 
3. Calculate wavelet time scale coefficient 

bb0 ′′′′++++  at which effects at the signal 

boundaries cease to influence on the 
amplitude surface. 

4. Choose two time locations  1b  and 2b  
and respective amplitudes of the wavelet 
coefficients (((( ))))10 b,aС  and (((( ))))20 b,aС . 

The logarithmic decrement αααα  is 
calculated by formula (17). 

The procedures can be employed for decay 
curve containing several natural frequencies. The 
sequence above should be applied to every natural 
frequency apart. 

DEMONSTRATION OF THE 
PROPOSED PROCEDURE 

Fig.4a shows signal comprising two decaying 
components with parameters: 003.01 ====αααα ; 

11.01 ====ωωωω ; 1А1 ==== ; 0027.02 ====αααα ; 24.02 ====ωωωω ; 

1.12 ====А . Projections of the corresponding 
amplitude surface are represented in Fig.4b. One can clearly see two areas pertained 
to maximums of wavelet coefficients at 591 ====a  and 272 ====a . They correspond to 

circular frequencies 11.01 ====ωωωω  and 24.02 ====ωωωω . Sections of the surface by plane at 

 
Fig.4 Test case: a) time decay curve 
 b) projection of the wavelet transform 
c) section of the wavelet transform at 
ω=0.11 d) section of the wavelet 
transform at ω=0.24 
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these frequencies are shown in Fig.4c and 4d respectively. Every curve resembles 
Fig.3. Oscillating form of the curve is explicitly highlighted in Fig.4d. It is connected 
with the fact that modulus of sum of 2 cosine functions is a cosine function too. Thus 
energy of oscillation with frequency 11.01 ====ωωωω  is distributed throughout scale factors 
a and contributes to oscillation of the amplitude curve for higher component 

24.02 ====ωωωω . 
Calculation of the logarithmic decrement by formula (17) from Fig.4c gives 

003004.01 ====αααα . It is very close to the modeling magnitude 0.003. Curve in Fig.4d 
decreases at 150b >>>> . The decaying part of the curve is approximated by an 
exponential function where coefficients are gathered by the least square method. 
Approximation of the curve in Fig.4d by exponential function and further 
implementation of formula (17) gives magnitude 002698,02 ====αααα . It is in a good 
compliance with the test value 0.0027. 

 
Accuracy of the method if measured signal contains intensive noise components 
 
The proposed method is robust to action of noise. Let us consider the previous decay 
curve (see paragraph “Continuous wavelet transform of a decay curve”) with noise 
that is added by generator of random numbers. The noise component is described by 
expression: 

 
(((( )))) (((( ))))(((( )))) (((( )))) (((( ))))[[[[ ]]]]bterndbttх bt ′′′′−−−−++++′′′′−−−−==== ′′′′−−−−−−−− ωωωωαααα cos111)( , 

 
where  100b ====′′′′ , 2,0====ωωωω , 003,0====αααα , (((( ))))arnd  - random number within interval a...0 . 

Approximating the wavelet section at 32aa 0 ========  and 200b >>>>  by an exponential 

curve, one can get the logarithmic decrement 003074,0====αααα . The calculation error in 
this case is less than 2.5%. Similar results are gathered if noise is represented by 
another dependence (Fig.5): 
 

(((( )))) (((( )))) (((( )))) (((( ))))[[[[ ]]]] (((( ))))[[[[ ]]]]1rndbtcosebt1tх bt ++++′′′′−−−−′′′′−−−−==== ′′′′−−−−−−−− ωωωωαααα , 
 

where noise parameters are the same as for the case above. 
To extract the logarithmic decrement from the wavelet transform, the wavelet 

section at 32aa 0 ========  has been approximated for time locations 600...200b ==== . The 

lower boundary of the interval is detected from condition 0bb >>>> , the upper limit is 

chosen to provide satisfactory signal-to-noise ratio. Expression (17) gives value of the 
logarithmic decrement 0,003028. It means that the computational error is less than 
1%.  
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Experimental verification of the proposed 
method 

 
Detection of logarithmic decrement by using 
wavelet transform was performed for pipeline 
elements (see Fig.6). Projection of the wavelet 
surface can be seen in Fig.7a. The amplitudes 
reach maximums at 29a ==== . The Morlet wavelet 
is applied at frequencies 1ff CB ========  and 

kHzf d 20==== . Correspondingly, the third natural 

frequency of bending oscillation is calculated at 
707Hz. Another method of natural frequencies 
extraction gives the 3rd mode at 703Hz [9]. 
Section of the wavelet transform at   29aa 0 ========  

is represented in Fig.7b. Approximation of the 
curve by the least square method brings the 
logarithmic decrement value 121====αααα . 
 

SUMMARY  

It is proposed method to calculate logarithmic 
decrement corresponding to natural frequencies of 
a structure with linear viscous friction that does 
not depend on amplitude of excitation. The 
method is based on Morlet wavelet transform of a 
measured decay curve. The derived formula 
enables to extract logarithmic decrement without 
complex signal processing and computational procedures. The proposed technique is 
not sensitive to noise component presented in a measured signal. It provides high 
accuracy in detection of damping properties of a structure even at not satisfactory 
signal-to-noise ratio. These peculiarities of the proposed method make it attractive for 
practical implementation.  
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Fig.5 Signal processing for the 
decay curve with noise 
component: a) time decay curve 
b) projection of the wavelet 
transform c) section of the 
wavelet transform at a0=32 

 
Fig.6 Scheme of the tested pipeline 

l1=580mm l2=208mm 
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Fig.7 a) Projection of the Morlet wavelet for the measured 
decay curve b) Approximation (curve 1) of the wavelet 
section at a0=29  for b>>>>b0 


