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Abstract

Estimation of damping properties is one of most angnt tasks in structural

dynamics. Despite noticeable development of fieliement methods results of the
modeling can be inaccurate especially for comptexctures at comparatively high
frequencies. Therefore experimental techniquesnddely employed for estimation

of energy dissipation in a structure.

Analysis of output signals measured on the streciarwidely used. The
consecutive post- process of responses is perforgiteér in time or frequency
domain. Unfortunately accuracy of calculationsngpaired by noise components of
the recorded signals.

It is proposed method to calculate logarithmic dewnt corresponding to
natural frequency of a structure. The method iethasr Morlet wavelet transform of
a measured decay curve. The derived formula enatdegxtract logarithmic
decrement without complex signal processing and petational procedures. The
technique can be employed for decay curve conis&veral natural frequencies.
The proposed procedure should be applied to ewsya frequency apart. Details of
the signal processing are described. Logarithmicredeent of the pipe’s natural
mode is calculated as a demonstration of the method

The technique is not sensitive to noise componeesgnted in a measured
signal. It provides high accuracy in detection afmbing properties of a structure
even at not satisfactory signal-to-noise ratio. Tinethod is appropriate for modal
testing of different structures that can be foundngineering practice.

Eds.: J. Eberhardsteiner, H.A. Mang, H. Waubke
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INTRODUCTION

Some average (integral) estimation of dissipativeperties of solid structures or
elements containing fluid/gas is needed for mangirexering tasks. Logarithmic
decrement is related to natural logarithm of arogkt ratio for two consecutive
oscillations in a decay curve [1]. It is conventdin utilized to describe rate of decay
for free oscillations.

In accordance to Basil's hypothesis every naturadjdency has its unique
logarithmic decrement. A logarithmic decrement banextracted from data analysis
either in time domain or frequency domain [1], [Bhpact hammer method with
analysis of the decay curve or accelerance funstiare commonly used in
engineering practice.

These methods are very sensitive to quality dfaindata. A source signal
may contain many noise components or some proheleal frequencies have very
close frequencies. Such procedures like signal evimol, truncation, coherence
analysis have been proposed to refine the origlatd. However if a structure itself
has a rich spectrum of natural frequencies, pragedt natural modes and shapes
extraction looks implicit.

Another robust method would be useful for many ficat applications. The
technigue based on wavelet transform is proposedarasalternative to the
conventional procedures.

IMPLEMENTATION OF WAVELET TRANSFORM TO DAMPING
PROPERTIESANALYSIS

Such features of wavelet transform like time lazation, easy scaling and shift make
it attractive for implementation in a signal prosieg. A measured signal can be
represented by a set of wavelets gathered from enatlavelet by scaling or shift
procedure [3],[4]:

w(t)=w(a,b,t)=%wo(?], ®

where (/(t) is a wavelet transform of the measured sigaalscale factorp- time
location, ¢(t ) is the mother wavelet. Multipliex®® is introduced in expression (1)
to normalize all wavelet functions.

Basic idea of the wavelet transform states thagr@as x(t) can be represented

as a sum of scaled mother functions [3],[4]:

x(t) = Zklckwk (t)
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As a measurement is performed within limited timeival anda, bJR (R is
real number domain)a=0:

clab)= () uf 52

In signal processing different types of the motlvarelet can be utilized. For
this case Morlet wavelet is chosen due to manyaatie features which are
discussed in scientific literature. It is descdlaes follows [5]:

w(t)=%e”"°t ' @

B

where f;is the frequency bandwidthf_is the wavelet central frequency. Morlet
wavelet is well localized in real and Fourier spa® represents a sinusoidal
Gaussian- based function. However there is a balé®etween frequency and time
resolution. With f_increase frequency resolution gets higher but tiooalization
goes down. Morlet wavelet function provides the tbesmbination between
frequency and time resolution [8]. Time resolutisincreased as frequencies become
higher.

Let us consider continuous wavelet transform ofquiit signal x(t) = cosat
with Morlet mother wavelet:

t-b)?

J‘el J (%) cosatdt = A(l, + I ,)

ab)

\/_

where

2jrfcb

Azi}/ﬂTa, |1=ijcos( °t)cos(ax)e dt I, jsm( °t]cos(ax)e fB(-)dt- 3

Utilizing the Euler’s formula and representatiortloé cosine function product
by the cosine sum, one can get:

1
175 +14)
| 2(|3 1)

AN IR S CAREEN

It is possible to determine integrdls and |, taking use of relation [6]:




A. Prokofiev, V. Lenchine, and V. Shakhmatov

00 m2
} NIT s
j e ™" cos(mx)dx =~ —e “° .
a

—00

The integrals are:

s —aw)’ _fe +aw)
Iy =acos{b(22c° - J]\/ﬂge (e oy =aco{b(2:° +wﬂ mfge a Crtereel

Thus integrall , is expressed as follows:

[ _fs —aw)? T ctaw)
I, = H;Ba {co{b(%—wﬂe a (rtemee) +co{b( Z:C +w)]e a i) } 4)

The similar technique can be employed to calcutatbintegral I ,. Also the next
property should be taken into account:

fe sin(mx)dx = 0.

The second integral takes form:

/ _fe +aw)? e C-aa)2
I =—n;3a{sin[b(—2ﬂ° —w)]e 4 (rteva0) +sin[b(2n'CC +wj]e sl )}. ()

a a

Formulas (3), (4), (5) enable to get analytical regpion for the wavelet
transform coefficients. It should be noted that ¢befficients are complex numbers.

Thus wavelet spectruntf(a,b) can be represented by the amplitqd‘éa,b] and
phase argC(a,b) surfaces in 3D graph. In this paper the wave specis shown by
projections to planéa,b). It is possible to track change of amplitut@(a,b] at

different scale and time by iso- lines.
The modulus for Morlet wavelet can be gatheredls\is:

[c(ab)=|AlG/12+12. (6)

Taking into account formulas (3)~(5) one can getrfi(6):
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|C(a,b] :%e-fa(ﬂ'zfcz+0,25a2w2)\/62n‘cf8aw +e-2n‘chaa)+2COSwa. (7)

In conventional wavelet algorithm it is supposedtthime intervals have a
unit spacing. This point is kept here in effect.t®ben it is convenient to take use of
normalized formulas:

w. =

n

w

—t, =tlf,,

fy ‘

wherefyis the sampling frequency of an original analogalg
Projection of the amplitude surfacCicum

|C(a,b] of a periodic signal based on °

Morlet wavelet represents a stripe of almc | N
constant intensity that is parallel to the tin

axis. It is practically not sensitive tb
parameter change. Section of the amplitu
surface by pland = constis shown in Fig.1. '
The line in Fig.1 has clear maximum at

0 — ; : —
[ 10 20 30 40 50 80 70
a

2r; (8)Fig-1 Modulus of coefficient C

Expression (8) is an approximate ratio betweenessathe Morlet transform
and frequency resolution.
Modulus of the wavelet coefficient is a periodiai¢tion since expression (7)

has membeRcos2ba under the square root sign. k> formula (7) can be

c'B
simplified since members(e‘2”°f3a"’) and (2cos2bw) become negligible in
comparison with the first term under the squaré:roo

|C(a,b)| =%e—f8(n2ff+o,25azaf)w =§e—f8(n‘c—0,5aw)z . (9)

Instead of expression (8) it is possible to demare precise formula for scale

diC
factor a, by taking derivative% that must equal zero:
a
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e,

a, = o . (10)

1
mf,
represented in another form:

If f.>> expression (10) can be approximated by formula Btan be

27k
© [K(f, f,).
T I(f. 1)

a0=

At f, =1 =1, k becomes equal.025 k value reached.011 at f; =1 and
f. =1.5. Maximum amplitude o€ coefficient can be obtained by substitution of (8)

into (9):
maxC(a,b) = \/IZT;) : (11)

The error ofmax|C(a,b)| estimation by expression (11) does not excee@d.4

If the periodic function has amplitude that is ihgtished from unit (for
example X), the modulus of the wavelet transforraficient calculated by formula
(7) or (9) must be multiplied by X.

CONTINUOUSWAVELET TRANSFORM OF A DECAY CURVE

Let us consider wavelet transform of decay curvas Tunction has zero values at
t<O0:

x(t)=1(t)Ae™ cosat
where 1(t) is Heaviside’s unit functiong is the logarithmic decrement. The wavelet
coefficient can be calculated from integral expie@ss

1% ich(%J -%{%)2 » i
C(a,b)= — _j;e e 0.(t) DAe = cos{ wt)dt =
) - w

e ) cos( wt)dt = B O
e S( wt)
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Ae-fBaz w2 a o —%t%[ sz—aﬂ]t
whereB = T = .[e fod fed 2 COS((LI)dt .
a
B 0

Table integrals in reference [7] allow to calculmigral | :

w (c+iby ; (c-jby ;

e 1 (m c+jb C—jb]

e ™ ™ cos(bx)dx ==.|—<e “ erfg +e 4 erf —= |+, at Rea>0.
-([ (bx) 4 a{ ( 2\/a ( 2V/a

So the analytical solution is:

a2 (2, :
= 025am eO,ZSfB [ fga '( a )] {l_erf O,Sa\/fiB(a— fzzz _J?+JwJJJ+
B

2rf.
| a Jw]D . (13)

The amplitude of the wavelet transform coefficieah be found from formulas (12)
and (13):

0,25fBa2[a 2b '(Z”C

ta2 )\ a +“’)] (1—erf[05am[a— 2b2

fga

+e

(c(ab)=|B||, (14)

Ae

. |C(a,50)] 1C(2,200)|
V7T ga

20

where|B| =

Fig.2 represents sections of th"]
wavelet coefficient amplitude surface b
planesb=const at f, =f =1, «=02, -
a =0,003. One can see shape similarity : T i w ) —
Fig.1 and 2. However with increase or a) b)
parameterb the amplitude of all points 0fFig.2 Modulus of coefficient C at
the last surface monotonically decreases Qf‘b:SQ b) b=200
a limit - up to zero).

Section of the amplitude surface by plaaescons at the same modeling
parameters as above is represented in Fig.3. Tive ¢ias clear maximum. At the
scale factora determined by expression (10) the maxima is oleskat by = 45.

Incremental trend of the considered curve at stmalimbers can be explained by the
fact that the wavelet function approaches boundary) (corresponds tio=0) and
begins to spread out of the boundary 0, where the original signal equals zero.
With a reduction the valud, at which the maximum of amplitude of the wavelet
coefficient for considered cross-section takeseyldecreases.
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In the further analysis we shall consider only dasing part of cross-section of
the amplitude surface by plaree= cons since this part of the graph is a matter of
interest to calculate logarithmic decrement

Part of the wavelet transform which correspondsidoay of free oscillations

has coefficientsb>b,, where |C(a,b] reaches maximum at time locatio,

a=a,, where a, is determined from expression (10). General foan(d#) for the

amplitude of the wavelet coefficient can be simtiffor these parametees andb.
The approximate relation is:

ic(a,b) = 0,25A\/ae°'25'533”2[1— erf (O,5ao\/f>8[a -be;gDJe‘”b =ze®, (15)

B

ZZ" k(fe.f.), 2= OZSA@eO'ZS‘Bag”{l—erf(O,Sao\/f_B(a— 2b°2 )D

feag

wherea, =

It should be noted that does not depend ol if

IC32,b)|

a, =const. Deriving equation (15), it is taker .
into account that ata=a, and b>Db,:

27, and modulus of the secon
a 2

exponential term in equation (13) is significant
less than the second one. The calculation error *
formula (15) does not exceed 12%.

Analysis of equation (15) discovers that
a=a,=const the section of the amplitude

surface atb>b, is an exponentially decreasin W0 e S doo ik g ik 200

curve. Exponential degree is a negative of thig-3 Modulusof coufficient C depending
product of logarithmic decrement and wavel&t Parameter b
time location.

22

oo

L6

CALCULATION OF THE LOGARITHMIC DECREMENT BY
AMPLITUDE OF THE WAVELET COEFFICIENT

To calculate logarithmic decrement from amplituddehe wavelet coefficient let us
consider system of 2 equations:

IC(ay b,)=ze™™,
{IC(ao b,)=2ze™. “o
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As decaying part of the wavelet transform is coamsd ab, >b, and b, >b,,
solution of equations (16) can be found as follows:

1 [Cla b,)
b, b, In |C(a0 ’bzx . a7

a=

Expression (17) is invariant to the time locatiirthe measured signal has time
shift b’, solution (17) is the same. However it is necgssapoint out that equation
(17) is valid at b>bh, +b' in this case.

The solution for logarithmic decrement can be exiganfor discrete wavelet
transform. Thus it is possible to extract logarithmecrement from measured decay

curve performing next operations.
1. Discrete wavelet transform with Morlet mothendtion should be executed.

2. Detect value of the wavelet scale fact
a, by shape of the amplitude surface wM\/\WWW\WWWW
the wavelet coefficient. i
3. Calculate wavelet time scale coefficie . '
b, +b' at which effects at the signa
boundaries cease to influence on tl
amplitude surface.
4. Choose two time locationsh, and b, ,
and respective amplitudes of the Wavel‘c(sw'“ T
coefficients |C(a, b,) and [Cla, b,).
The logarithmic decrementa is =
calculated by formula (17). 1/
The procedures can be employed for dec | /
curve containing several natural frequencies. T-; = " ) )
sequence above should be applied to every nat” ’

frequency apart. \
1
J

DEMONSTRATION OF THE | i
PROPOSED PROCEDURE A

. . .- . Fig.4 Test case: a) time decay curve
Fig.4a shows signal comprising two decayn% projection of the wavelet transform

components  with  parameters:a@; =0.003; ¢y section of the wavelet transform at
w=011; A4,=1; a,=0.0027; w =0.24; «=0.11d) section of the wavelet
A,=11. Projections of the correspondinfjansiormat w=0.24

amplitude surface are represented in Fig.4b. Oneclearly see two areas pertained
to maximums of wavelet coefficients af =59 and a, =27. They correspond to
circular frequenciesw, =0.11 and w, =0.24. Sections of the surface by plane at




A. Prokofiev, V. Lenchine, and V. Shakhmatov

these frequencies are shown in Fig.4c and 4d régplc Every curve resembles
Fig.3. Oscillating form of the curve is explicithighlighted in Fig.4d. It is connected
with the fact that modulus of sum of 2 cosine fiorts is a cosine function too. Thus
energy of oscillation with frequencg, = 0.11 is distributed throughout scale factors
a and contributes to oscillation of the amplitude veurfor higher component
a, =024,

Calculation of the logarithmic decrement by form@l&) from Fig.4c gives
a, =0.003004. It is very close to the modeling magnitud®03 Curve in Fig.4d
decreases ab>150. The decaying part of the curve is approximated doy
exponential function where coefficients are gattieby the least square method.
Approximation of the curve in Fig.4d by exponentianction and further
implementation of formula (17) gives magnitudg =0,002698 It is in a good
compliance with the test val@e0027

Accuracy of the method if measured signal contains intensive noise components

The proposed method is robust to action of noigt¢.us consider the previous decay
curve (see paragraph “Continuous wavelet transfofra decay curve”) with noise
that is added by generator of random numbers. Disercomponent is described by
expression:

x(t) =1(t = b')(1 + rnd (1))e"*) cogaft - b')],

where b’ =100, & =02, @ =0,003, rnd(a) - random number within intervdl..a.
Approximating the wavelet section at=a, =32 and b>200 by an exponential

curve, one can get the logarithmic decremgrt0,003074. The calculation error in
this case is less than 2.5%. Similar results atbeged if noise is represented by
another dependence (Fig.5):

x(t)=1(t - b')[e"’("b') codeft -b')|+rnd (1)] :

where noise parameters are the same as for thalasge.
To extract the logarithmic decrement from the wavélansform, the wavelet
section ata=a, =32 has been approximated for time locatibrs200...600. The

lower boundary of the interval is detected fromditan b >b,, the upper limit is

chosen to provide satisfactory signal-to-noiseordEixpression (17) gives value of the
logarithmic decrement 0,003028. It means that traputational error is less than
1%.
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X(t

Experimental verification of the proposed
method

Detection of logarithmic decrement by usir
wavelet transform was performed for pipelir
elements (see Fig.6). Projection of the wave! ~— ., = & = & w
surface can be seen in Fig.7a. The amplitu
reach maximums a&=29. The Morlet wavelet
is applied at frequenciesf, =f. =1 and

fy =20kHz. Correspondingly, the third nature

frequency of bending oscillation is calculated :
707Hz. Another method of natural frequenci
extraction gives the '3 mode at 703Hz [9].
Section of the wavelet transform aa=a,=29 _ ' ~ “., " ° ¥

|C32,b)|
is represented in Fig.7b. Approximation of tt°
curve by the least square method brings
logarithmic decrement valug = 121. 7

iy
SUMMARY iy <

s

It is proposed method to calculate logarithm . N
decreFr)negt corresponding to natural frquencie'ﬁﬂ'5 Sonal processing for the
a structure with linear viscous friction that doggcay curve.athh noise

not depend on amplitude of excitation. T gomponent: ) fime decay curve
method is based on Morlet wavelet transform OE) projection of t_hevvavelet
measured decay curve. The derived form Egnsformc) section of 'Te

enables to extract logarithmic decrement WithovM?velettransform at 8p=32
complex signal processing and computational praesdurhe proposed technique is
not sensitive to noise component presented in asumed signal. It provides high
accuracy in detection of damping properties ofracsiire even at not satisfactory
signal-to-noise ratio. These peculiarities of theposed method make it attractive for

practical implementation.
[;=580mm $3=208mm
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Fig.7 a) Projection of the Morlet wavelet for the measured
decay curve b) Approximation (curve 1) of the wavelet

section at ag=29 for b>bg



