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Abstract 
Vibration of a viscoelastic cantilever beam having a viscoelastic point support with a 
tip mass is analyzed by using the principle of relative motion within the framework 
of the Euler-Bernoulli beam theory. Kelvin-Voigt model is used for the material of 
the beam. The Lagrange equations are used to examine the steady-state response to 
harmonic base excitation of a viscoelastically supported viscoelastic cantilever beam 
with the tip mass. The constraint condition against rotation of the support end is 
taken into account by using the Lagrange multipliers. In the study, for applying the 
Lagrange equations, the trial functions denoting deflection of the beam is expressed 
in polynomial form. The influence of the support damping, internal damping and the 
tip mass on the steady-state response of the beam is investigated numerically for 
various external damping, internal damping and mass ratio.  
 
 

INTRODUCTION 
 
In recent years, base isolation of structures to earthquake excitation has been very 
important research topic. Thus, the dynamic response of beam-type structures with 
concentrated masses, such as chimneys of plants, communication towers, manipulator 
arms and many others, to base excitation are of considerable interest to the engineers 
designing mechanical and structural systems. As it is known vibration damping is 
very important in engineering practice. The damping treatments at the base of the 
structures can be alternative solution to surface damping treatments with viscoelastic 
materials for beams and plates in some cases. There are many studies on forced 
vibration of beams and plates ([1]-[8]). 
 

In this study, the problem is analyzed by using the Lagrange equations with 
the trial function in polynomial form denoting the deflection of the beam for 
determining the peak values of the dynamic responses of the viscoelastically 
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supported viscoelastic cantilever beam with a tip mass under the effect of the 
harmonic base excitation within the framework of Bernoulli-Euler beam theory. The 
constraint condition against rotation of the supported end is taken into account by 
using Lagrange multipliers. In numerical analysis, the steady-state response to a 
harmonic base excitation is determined for the first two peaks of the tip displacements 
for different values of internal damping, external damping and the mass ratio.  

 
 

ANALYSIS 
 
Consider a viscoelastically supported viscoelastic cantilever beam of length L , cross-
section area A , moment of inertia I , modulus of elasticity E , mass of the beam per 
unit volume ρ  with the tip mass under harmonic base excitation effect as shown in 
Fig.1, where sk  is the spring constant, sc  is the damping coefficient, M is the mass of 
the tip mass. The beam is constrained against rotation at the lower end. Also, the mass 
of this part is not taken into account, and it is assumed that there are no friction forces 
between the base and the beam system.  

T

k /2

L / 2  

U  (t)G

U (t)X  , 2

X 1

L  
O

s sk /2

c /2s sc /2

L / 2  

M 

 
Figure 1-Viscoelastically supported viscoelastic cantilever beam with a tip mass under base 
excitation effect 
 

The relative displacement is given as follows: 
 

( ) ( ) ( )T GW X ,t U X ,t U t= − ,       (1) 

 

where ( ),TU X t  is total displacement, ( )GU t  is base displacement. For the beam 
subjected to harmonic base excitation, the base displacement can be expressed as 

( ) i t
G GU t U e ω= , where GU  is amplitude of the base displacement and ω  is radian 
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frequency of the harmonic base movement. The constitutive relations for the Kelvin-
Voigt model which is for the material between the stresses and strains become 
 

( )i iE c Eσ ε ε ε η ε= + = + ,       (2) 
 

where ε  is the longitudinal stress, ic  is the coefficients of the internal damping of the 
beam, iη  is the proportionality constants of the internal damping of the viscoelastic 
beam. Dimensions of the coefficient of the internal damping of the beam and 
proportionality constant of the internal damping of the beam are 2Ns/m  and s, 
respectively. 

 

According to Bernoulli-Euler beam theory, the elastic strain energy of the beam, 
dissipation function and the kinetic energy of the beam with the tip mass at any 
instant are expressed as an integral in Cartesian co-ordinates, respectively 
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where ( ),W X t  is the steady-state response of the beam relative to the harmonic 
excitation and mX  is the co-ordinate of the tip mass. The kinetic energy due to the 
rotation of the beam and the tip mass is ignored. Also, for the considered parameters, 
the ratio of the tip mass to the mass of the beam is not large enough to cause 
secondary effects such as buckling. Therefore, secondary effects are not of concern 
and the bending is assumed as independent of axial loadings such as the weight of the 
beam and the tip mass. Additive strain energy and dissipation function of viscoelastic 
supports are 
 

( ) ( )( )21
2S s T S GF k U X ,t U t= −       (6a) 

( ) ( )( )21
2D s T S GF c U X ,t U t= − ,      (6b) 

 

where SX  is the co-ordinate of the support of the beam, ( )T SU X ,t  and ( )T SU X ,t  
are the total displacement and the total velocity of the lower end of the beam, 
respectively. The functional of the problem is  
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( )SI T U F= − + .        (7) 
 

In order to apply the Lagrange equations, the trial function for ( ),W X t  is 

approximated by space-dependent polynomial terms 0 1 2 1, , ,...., NX X X X −  and time-
dependent generalized displacement co-ordinates ( )nq t . Therefore, 
 

( ) ( ) 1

1

N
n

n
n

W X ,t q t X −

=

= ∑ ,       (8) 

 
The only constraint condition of the support is satisfied by using the Lagrange 

multipliers. The constraint condition of the beam is given as follows: 
 

( ), 0SW X t′ =          (9) 

 

In Eq. (9) SX  denotes the location of the support, prime denotes the derivative 
with respect to X. The Lagrange multipliers formulation of the considered problem 
requires us to construct the Lagrangian functional as follows: 
 

( ),SL I W X tα ′= + ,        (10) 
 

In Eq. (10), α  is the Lagrange multiplier which is the support moment 
reaction against the rotation of the supported end of the beam in the considered 
problem. Lagrange equations are given as follows: 
 

0D
k k

L d L Q
q dt q
∂ ∂

− + =
∂ ∂

, 1 2 3 1k , , ,..., N= + ,   (11) 

 

In Eq. (11), DQ  is the generalized damping force obtained from 
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By introducing 1Nq α+ = , and following non-dimensional parameters  
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and considering that when the base excitation is expressed as ( ) i t
G GU t U e ω= , 

then the time-dependent generalized co-ordinates are expressed as follows: 



T. Kocatürk, M. Şimşek, N. İlhan 
 

( ) i t
n nq t q e ω=          (14) 

 

In Eq. (14), nq  is a complex variable containing a phase angle. After the 
application of the Lagrange equations by taking into account Eq. (1), a set of linear 
algebraic equations is obtained which can be expressed in the following matrix form: 
 

[ ]{ } [ ]{ } [ ]{ } [ ]{ } [ ]{ } { }2 2
rA q i B q i C q D q m E q fηλ λγ λ λ+ + − − =   (15) 

 
where [ ]A , [ ]B , [ ]C , [ ]D  and [ ]E  are coefficient matrices and { }q  is vector of 

unknowns. Elements of the generalized force { }f  are expressed as 
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1 2
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1 2

d
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= +∫  1 2 3 1k , , ,..., N= +  (16) 

 

where rm  is the ratio of the mass of the tip mass to the mass of the beam. The 
maximum displacements of the base and the tip of the beam are given, respectively 
 

( ) ( )1 1

1 1
0.5 , 0.5

N N
n n

b n t n
n n

w q w q− −

= =

= − =∑ ∑      (17) 

 
The dimensionless horizontal reaction force at the base is given below 

 

( ) ( )0.5R i wκ γ λ= + −        (18) 
 
 

NUMERICAL RESULTS 
 

The steady state response of a viscoelastic cantilever beam with a tip mass to a 
periodic base motion ( ) i t

G GU t u e Lω= , viscoelastically supported at the base, is 
calculated numerically. In the numerical calculations, dimensionless amplitude of the 
base movement is taken as 0.1Gu = . In the study performed by Kocatürk [6] steady 
state response with respect to base movement of viscoelastically supported cantilever 
beam was analyzed. In the study performed by Kocatürk et al. [7] steady state 
response with respect to base movement of viscoelastically supported viscoelastic 
cantilever beam was analyzed. In the present study, only a tip mass is added to the 
free end of the viscoelastic cantilever beam. Because a convergence study was made 
and it was found that 12 polynomial terms were sufficient for the desired numerical 
accuracy, in the calculation of the results of the present study, 12 terms of the 
polynomial series are used, namely the size of the determinant is 13x13. 
 

Figures 2a, 3a and 4a show that with the variation of the damping parameter γ  
of the support, a damping parameter can be obtained for which the first and second 
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peak values of the tip displacements respectively are minimum. The peak values of 
the tip displacements occur at different values of λ  while changing the damping 
parameter γ . However, the frequency parameter λ  remains between the frequency 
parameters λ  obtained for 0γ =  and γ = ∞ . Therefore, in Figures 2, while changing 
γ  for obtaining minimum peak value of the tip displacements for the considered 
mode, the frequency parameter λ  also changes a little. It is seen in Figure 2a that, 
regardless of the damping parameters of the support, there are some points of 
intersection of the transverse deflection curves of the tip of the beam and support 
reactions of the beam. Similar figures can be obtained for the other values of κ  for 
the tip displacements and for the reaction forces. However, as seen from Figures 2b, 
c, d, 3b, c, d and 4b, c, d, when the internal damping is different from zero the curves 
obtained for various damping values of support do not intersect each other at the same 
point. It is seen from Figures 2b, c, d, 3b, c, d and 4b, c, d that, existence of internal 
damping reduces and smoothes the displacement responses significantly. Also, it is 
seen from these figures that, when both support damping and internal damping are 
existent, then the most effective vibration damping is obtained. For the considered 
parameters, when the internal damping parameter is 0.1η = , all the tip displacement 
responses tw  within the considered frequency range becomes smaller than 1 as seen 
from Figures 2d, 3d and 4d. As an expected result, Figures 2-4 show that, with the 
increase of the tip mass, the frequencies, in which the peak displacements occur, 
decrease.  
 

 

        

        
 

Figure 2-The tip displacements for the variation of λ  for various values of γ , 100κ = , 

0rm = , (a) 0η = , (b) 0.01η = , (c) 0.05η = , (d) 0.1η = , 0γ = , 5γ = − − − , 

50γ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ , 1000γ = − ⋅ − ⋅ − . 
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Figure 3-The tip displacements for the variation of λ  for various values of γ , 100κ = , 

0.5rm = , (a) 0η = , (b) 0.01η = , (c) 0.05η = , (d) 0.1η = , 0γ = , 5γ = − − − , 

50γ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ , 1000γ = − ⋅ − ⋅ − . 
 
 

        

        
 

Figure 4-The tip displacements for the variation of λ  for various values of γ , 100κ = , 

1.0rm = , (a) 0η = , (b) 0.01η = , (c) 0.05η = , (d) 0.1η = , 0γ = , 5γ = − − − , 

50γ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ , 1000γ = − ⋅ − ⋅ − . 
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CONCLUSIONS 

By using the Lagrange equation, the steady state response of a viscoelastically 
supported viscoelastic cantilever beam with a tip mass to a sinusoidally varying base 
movement has been studied. To use the Lagrange’s equation with the trial function in 
the polynomial form and to satisfy the constraint condition by the use of Lagrange 
multipliers is a very good way for studying the structural behavior of the present 
problem. For the same accuracy level, it needs considerably fewer degrees of freedom 
than the finite element method [8] and energy based finite difference method as it was 
demonstrated by Kocatürk et al. [4].  
 

By the application of the above mentioned solution technique, the response 
curves for tip displacements to a sinusoidally varying base movement are determined 
numerically for viscoelastically supported viscoelastic cantilever beam with a tip 
mass. The effect of the viscosity of the support, viscosity of the material of the beam 
and tip mass of the cantilever beam on the response curves is investigated and shown 
in the figures.  
 

All of the obtained results are very accurate and may be useful for designing 
structural and mechanical systems under base movement. 
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