
Hierarchical Regularization Cascade for Joint Learning

Appendix: Supplementary material

A. Proof of Thorem 1

Proof. We assume in the statement of the theorem
that

Rl
T (Ŵ

l
∗) ≥ −(M − 1)(γD2 +

G2

γ
)
√
T (8)

for some constant M > 1. This assumption is jus-
tified if the accumulated cost obtained by the online
algorithm is larger than the cost obtained by the opti-
mal batch algorithm for most of the training examples.
We argue that if this assumption is violated then the
online algorithm is revealed to be a very good per-
former, and it therefore makes little sense to judge its
performance by the deviation from another algorithm
(the “optimal” batch algorithm) whose performance is
worse for a significant fraction of the training sample.

Using the definition of Lt,Wl−1
∗

and Lt,Wl−1
t

, we

rewrite the regret (6) with a single loss function

Rl
T (Ŵ

l
∗) =

T∑
t=1

(Lt,Wl−1
t

(Ŵl
t) + ψl(Ŵl

t))−

[

T∑
t=1

(Lt,Wl−1
t

(Ŵl
∗ +Wl−1

∗ −Wl−1
t) + ψl(Ŵl

∗))]

From the convexity of Lt,Wl−1
t

it follows that

T∑
t=1

(Lt,Wl−1
t

(Ŵl
t)− Lt,Wl−1

t
(Ŵl

∗ +Wl−1
∗ −Wl−1

t))

≤
T∑

t=1

< U l
t ,Ŵ

l
t − Ŵl

∗ −Wl−1
∗ +Wl−1

t >

Under the conditions of the theorem, it is shown in
(corolllary 2a (Xiao, 2010)) that

T∑
t=1

< Ut,Wt −W∗ > +ψ(Wt)− ψ(W∗)) ≤ ΔT

where ΔT = (γD2+ G2

γ)
√
T . Using this result and the

sublinearity of the inner product, we get

Rl
T (Ŵ

l
∗) ≤ ΔT +

T∑
t=1

< U l
t ,W

l−1
t −Wl−1

∗ > (9)

From the definition ofWl−1
t =

∑l−1
k=1 Ŵ

k
t andWl−1

∗ =

∑l−1
k=1 Ŵ

k
∗ and the Cauchy-Schwarz inequality we get

Rl
T (Ŵ

l
∗) ≤ ΔT +

l−1∑
k=1

T∑
t=1

< U l
t ,Ŵ

k
t − Ŵk

∗ >

≤ ΔT +

l−1∑
k=1

T∑
t=1

||U l
t ||||Ŵk

t − Ŵk
∗ || (10)

We use the bound on ||Ŵk
t − Ŵk

∗ || from (theorem 1b
(Xiao, 2010)) and assumption (8) to obtain

T∑
t=1

||Ŵk
t − Ŵk

∗ || ≤
T∑

t=1

√
2MΔt

σt+ γ
√
t

≤ Q
T∑

t=1

t−
1
4 ≤ Q

4

3
(T + 1)

3
4

where Q =
√

2M
σ (γD2 + G2

γ). Inserting this last in-

equality into (10), and since ∀t, l ||Ul
t|| < G, we obtain

Rl
T (Ŵ

l
∗) ≤ ΔT + (l − 1)GQ

4

3
(T + 1)

3
4 (11)

from which (7) immediately follows.

B. Synthetic Data Experiments

The synthetic data is created in the following manner:
we define a binary tree with k leaves. Each leaf in
the tree represents a single binary classification task.
Each node in the tree corresponds to a single binary
feature f ∈ {−1, 1} . For a single task we divide
the features into two groups: task-specific and task-
irrelevant. Task-irrelevant features have equal proba-
bility of having the value 1 or −1 for all examples in
the task. Task-specific features are assigned the value
1 for all positive examples of the task. All negative
examples of the task must have at least one feature
from the task-specific feature set with a value of −1.
The task-specific feature set is the set of features corre-
sponding to all nodes on the path from the leaf to the
root, while all other nodes define the task-irrelevant
feature set. For each group of tasks, their shared fea-
tures are those corresponding to common ancestors of
the corresponding leaves. An illustration of the binary
tree and a an example of a sample set of a specific task
is given in Fig. 4.

Structure discovery: Feature weights learnt at different
learning steps of the cascade for an experiment with
100 synthetic tasks, 199 features and 20 positive and
negative samples per task, are shown in Fig 5. As
can be seen, the first learning stages, l = 1 and l =
2 capture shared information, while the last stages,

Hierarchical Regularization Cascade for Joint Learning

Figure 4. Synthetic data illustration. Left graph shows a
tree of features corresponding to four tasks. The task spe-
cific features of task 2, ’T2’, are highlighted in red. The
task-irrelevant features are marked blue. The table on the
right shows an example of a sample set sampled for task
’T2’ given the task tree to the left. Each row denotes a
sample. Each column denotes a feature. ’Positive’ and
’Negative’ denote the positive and negative sample sets,
respectively.

l = 1 l = 2 l = 4

Figure 5. Synthetic experiment learnt parameters Wl.
Each plot corresponds to a single matrix learnt at stage
l of the cascade. The rows correspond to features and each
column corresponds to a single task.

e.g. stage l = 4 capture task specific features. The
hierarchical shared structure of features is discovered
in the sense that higher levels in the cascade share the
same set of features and as the cascade progresses the
chosen features are shared by less tasks. The pattern
of learnt feature weights fits the synthetic data pattern
of feature generation.

Parameter Robustness Fig. 6 shows the robust-
ness of the hierarchical approach with respect to the
regularization parameter φ. For all three regularizing
approaches we varied the value of φ in the range [0.01-
2] with 0.01 jumps. For the hierarchal approach we set

φ1 = φ and φl = φl−1

2 for all l ∈ [2..L].

We also found the method to be quite robust to the
parameter L determining the number of levels in the
cascade. Varying the value of L between 3 to 7 on the
synthetic data with 100 tasks gave close results in the
range 94.5% to 95.5%.

Single Level Comparison Fig. 7 we show a com-
parison of the online cascade to a group of single level

Figure 6. Performance as a function of the regularization
parameter φ. Synthetic data with 100 examples per task.
The ’Y’-axis corresponds the average accuracy of all tasks
on 10 repetitions of the experiment. The ’X’-axis corre-
sponds to the value of φ. Note that the max values of each
method are: 96.02, 94.23 and 92.30 for ’H’, ’L11’ and ’L12’
respectively.

Table 4. Varying the number of levels L

L = 2 L = 3 L = 4 L = 5 L = 6 L = 7 L = 8
92.42 95.47 95.73 94.74 95.21 94.48 93.52

regularization schemes, using the same set of λ val-
ues we used in the cascade. Clearly no single-level
regularization achieves as good performance as the hi-
erarchical method.

Adding Tasks We examined the effect of the num-
ber of tasks in the multitask setting. Ideally adding
more tasks should never reduce performance, while
in most cases leading to improved performance. We
tested two scenarios - adding tasks which are simi-
larly related to the existing group of tasks Fig. 8a,
and adding tasks which are loosely related to all other
tasks but strongly related among themselves Fig. 8b.

With additional tasks of the same degree of related-
ness, we increase the amount of information available
for sharing. As expected, we see in Fig. 8a that per-
formance improves with increasing number of tasks,
both for the hierarchical algorithm and for ’L12Reg’.
’L1Reg’ is not intended for information sharing, and

Figure 7. A comparison of our online cascade approach ’H’
to variants corresponding to intermediate levels in the cas-
cade, defined by the value λ. ’Y’-axis measures the average
accuracy over all tasks, and the ’X’-axis the sample size.

Hierarchical Regularization Cascade for Joint Learning

therefore it is not affected by increasing the number
of tasks. When adding loosely related tasks, we see in
Fig. 8b that the performance of the hierarchical algo-
rithm increases as we add more tasks; for the ’L12Reg’
method, on the other hand, we see a significant drop
in performance. This is because in this case the over-
all relatedness among all tasks decreases as additional
tasks are added; the ’L12Reg’ method still tries to
share information among all tasks, and its performance
therefore decreases.

(a) (b)

Figure 8. Adding tasks results. Plots correspond to the av-
erage 1-vs-rest accuracy as a function the number of tasks,
when (a) adding similarly related tasks and (b) adding
loosely related tasks. Blue denotes our hierarchical Algo-
rithm 1, green the ’L1Reg’ baseline and black the ’L12Reg’
baseline method.

Data Rotation Next, we wish to isolate the two fac-
tors of sparsity and shared information. The synthetic
data was constructed so that there is an increased level
of shared information between classes as a function
of the distance between their respective leaves in the
defining tree of features. The shared features are also
sparse. In order to maintain the shared information
and eliminate sparseness, we rotate the vector of fea-
tures; when the rotation is applied to more features,
the amount of sparseness decreases respectively.

Table 5 shows the comparative results both for the case
when all features are rotated and when only half are
rotated (in which case the features being rotated are
chosen randomly). As expected, the regularization-
free method - ’NoReg’ - is not effected by any of
this. The performance of ’L1Reg’, which assumes spar-
sity, drops as expected, reaching baseline with full ro-
tation, presumably because during cross-validation a
very low value for the regularization parameter is cho-
sen. The two methods which exploit shared informa-
tion, our hierarchical algorithm and the ’L12Reg’ base-
line method, perform better than baseline even with
no sparseness (full rotation), showing the advantage of
being able to share information.

Table 5. Performance comparison for the different meth-
ods applied to the Synthetic data. ’T 100 S 20’ denotes
the multi-task setting with 100 tasks and 20 samples each,
’half rotated’ - the same setting as ’T 100 S 20’ with a ran-
dom rotation of half of the features, and ’full rotation’ - a
random rotation of all the features.

T 100 S 20 half rotation full rotation
H 95.40 ± 0.17 90.37 ± 0.61 78.49 ± 0.16

L1Reg 92.54 ± 0.17 86.70 ± 0.59 73.01 ± 0.09
L12Reg 91.49 ± 0.2 85.56 ± 0.62 78.49 ± 0.16
NoReg 72.88 ± 0.19 72.81 ± 0.12 73.03 ± 0.10

C. Real Data

C.1. ILSVRC2010 Baseline Comparison

In Fig 9 we show the error rates for the Top-1 sce-
nario, considering a single classification. We show re-
sults when training using all the data Fig 9-left, and
when using only 100 examples per each task Fig 9-
right. The results are shown as a function of the num-
ber of repetitions of the algorithm over all the data.

At convergence we see an improvement of 1.67% in ac-
curacy when using the cascade with 7 levels, 28.96%
compared to 27.29%. (Zhao et al., 2011) obtained
an improvement of 1.8% in accuracy when compar-
ing their approach to their own baseline, 22.1% vs.
20.3%. We obtained a similar rate of improvement us-
ing much less information (not knowing the hierarchy)
for a higher range of accuracies.

We note that our baseline approaches converge after
20 repetitions when using all the data, (for clarity we
show only up to 15 repetitions in the left plot of Fig 9).
This effectively means the same runtime, as the cas-
cade runtime is linear in the number of levels where
each level has the same complexity of the baseline ap-
proaches. On the other hand the online cascade al-
gorithm 2 can be trivially parallelized where as the
repetitions over the data for a single baseline cannot.
Thus, in a parallel setting the gain in runtime would
be linear in the number of levels of the cascade. A
trivial parallelization can be implemented by running
each level of the online cascade on a time stamp shifted
by l thus the first level of the cascade will see at time
t the t sample while level l will see sample t− l.

D. Knowledge Transfer

Batch Method The batch knowledge-transfer
method is described below in Algorithm 3. The pro-
jection matrix Pl is defined by the first z columns of
the orthonormal matrixUl, where svd(Wl) = UlΣVl.

Hierarchical Regularization Cascade for Joint Learning

Figure 9. Real data, showing performance of Top-1 classi-
fication on the ILSVRC(2010) challenge (Berg et al., 2010)
using all examples (left plot) or only 100 examples per each
category (right plot). Here the ’X’-axis corresponds to rep-
etitions over the training data. In the left plot ’H-L5’ and
’H-L7’ denote our hierarchical algorithm with 5 and 7 levels
respectively. In the right plot ’H’ corresponds to 5 levels in
our hierarchical algorithm. The error bars in correspond
to the standard error given 3 different choices of 100 Ex-
amples.

Online Method The online knowledge-transfer al-
gorithm is described below in Algorithm 4; it succeeds
told iterations of Algorithm 2. The input to the al-
gorithm is the same set of parameters used for Algo-
rithm 2 and its intermediate calculations - the cas-
cade {Wl

old}Ll=1 and the set of final average subgradi-
ents {Ūl

old}Ll=1. These are used to approximate future
subgradients of the already learnt tasks, since Algo-
rithm 4 receives no additional data-points for these
tasks. The parameters of Algorithm 2 are used be-
cause cross-validation for parameter estimation is not
possible with small sample.

Below we denote the vector corresponding to the mean
value of each feature as mean(Wl

old). We denote the
concatenation of columns by ◦. In order to account
for the difference between the old time step told to the
new time step t we consider h(W) to be the squared l2
norm applied to each column separately. We calculate
the inner product of the resulting vector with γ√

told◦t
in step 1(a).(iv);

√
told ◦ t denotes a vector derived by

the concatenation of k times told with t.

D.1. Experiments

In this section we evaluate our algorithms for knowl-
edge transfer in small sample scenarios. We start by
comparing the different methods on controlled syn-
thetic data in Section D.1.1. We then test the perfor-
mance of our method using several real data datasets
employing different image representation schemes in
two different settings: medium size, with several tens
of classes and a dimensionality of 1000 features as im-

Algorithm 3 Knowledge-Transfer with shared fea-
tures projections

Input :

L number of levels

{Pl}Ll=1 Set of projections matrices learnt from the k pre-
trained tasks

Output :

W

1. W0 = 0

2. for l = 1 to L

(a) Projection:

i. x̂ = Plt ∗ x, ∀i ∈ [1..k] and ∀x ∈ Si

ii. ŵl−1 = Plt ∗wl−1

(b) Ŵ = argmin
W

L({Ŝi}ki=1,W + Ŵl−1)

(c) Backprojection: w = Pl ∗ ŵ
(d) wl = wl−1 +w

3. w = wL

age representation in Section D.1.2; and large size,
with hundreds of classes and an image representation
of 21000 features in Section D.1.3. We also compared
the performance in a ’1-vs-rest’ setting and in a setting
with a common negative class (as in clutter).

The methods used for comparison are the following:

Batch methods

• KT-Batch-H: corresponds to Algorithm 3 where
knowledge-transfer is based on the projection ma-
trices extracted from the batch cascade learning.

• KT-Batch-NoReg: here knowledge transfer corre-
sponds to Algorithm 3 with L = 1 and φ = 0,
where information is transferred from the previ-
ously learnt models which were learnt in a single
level with no regularization and no incentive to
share information.

Online methods

• KT-On-H: corresponds to Algorithm 4 where we
transfer information given the full cascade of reg-
ularization functions.

• KT-On-L12: corresponds to Algorithm 4 with
L = 1 and λ = 0, where a single level of informa-

Hierarchical Regularization Cascade for Joint Learning

Algorithm 4 Online Knowledge-Transfer learning
cascade
Input :

L, {λl}Ll=1, {φl}Ll=1, γ set of parameters as in Algo-
rithm 2

{Ūl
old}Ll=1 the average subgradient of the last iteration
of Algorithm 2

{Wl
old}Ll=1 the set of parameters learnt by Algo-
rithm 2

told number of temporal iterations of Algorithm 2

Initialization:

Ŵl
0 = Wl

old ◦mean(Wl
old), Ūl

0 = Ūl
old ◦ 0 ∀l ∈ {1..L}

W0
t = 0 ∀t
1. for t = 1,2,3,... do

(a) for l = 1 to L

i. Given the function Lt,Wl−1
t

, compute a

subgradient Ul
t,new ∈ ∂Lt,Wl−1

t

ii. Ūl
t,new = t−1

t Ūl
t−1,new + 1

tU
l
t,new

iii. Ūl
t = Ūl

old ◦ Ūl
t,new

iv. Ŵl
t = argmin

W
Ūl

tW + ψl(W)+ <

γ√
told◦t , h(W) >

v. Wl
t = Wl

old ◦ (Wl−1
t,new + Ŵl

t,new)

(b) Wt = WL
t

tion transfer is based on models trained to share
information between all tasks equally.

Baseline methods, without Knowledge Transfer:

• NoKT-Batch: corresponds to the multi-task batch
Algorithm 1 with L = 1 and φ = 0.

• NoKT-On-NoReg: corresponds to the multi-task
online Algorithm 2 with L = 1 and φ = 0.

D.1.1. Synthetic Data

To test Algorithms 3 and 4 we trained 99 tasks us-
ing the multi-task batch and online algorithms with
only 99 tasks, keeping the remaining task aside as the
unknown novel task. Each known task was trained
with 50 examples, with 10 repetitions over the data
for the online Algorithm 2. After this multi-task pre-
processing had finished, we trained the left out task us-

ing Algorithms 3 and 4 with either 1-10, 20 or 50 exam-
ples (with 100 repetitions in the online Algorithm 4).
This was done 100 times, leaving out in turn each of
the original tasks. In the batch knowledge-transfer
we chose the rank of each projection matrix to keep
99.9% of the variance in the data. In the hierarchi-
cal knowledge-transfer this resulted in approximately
10 dimensions at the top level of the cascade, and 90
dimensions at the lowest level of the cascade.

As can be seen in Fig. 10a, our Knowledge-Transfer
methods based on shared multi-task models achieve
the best performance as compared to the alterna-
tive methods. The online knowledge-transfer method
achieves the best results on this dataset. Note that
with very small samples, the method which attempts
to share information with all tasks equally - KT-On-
L12 - achieves the best performance. As the sample
increases to 50, Algorithm 4 is able to perform bet-
ter by exploiting the different levels of sharing given
by the hierarchical approach KT-On-H. For both on-
line Knowledge-Transfer options we see a significant
improvement in performance as compared to the on-
line with no knowledge transfer approach, NoKT-On-
NoReg.

Looking at the batch method we see that Knowledge-
Transfer based on sharing information between the
original models, KT-Batch-H, outperforms signifi-
cantly the knowledge-transfer based on no sharing
of information in the original model training, KT-
Batch-NoReg. The KT-Batch-NoReg actually per-
forms no better than the no knowledge-transfer ap-
proach NoKT-Batch.

It is also interesting to note that the difference in av-
erage performance between the novel task to the pre-
trained tasks is less then 0.5% for 50 training exam-
ples when using the hierarchical knowledge-transfer.
This indicates that in this experiment our hierarchi-
cal knowledge-transfer method reaches the potential
of sharing as in the multi-task method, which outper-
forms all other methods on this synthetic data.

D.1.2. Medium size

We tested our method with real data, starting with a
moderate problem size and only 31 classes. For these
experiments we used a subset of the ILSVRC(2010)
challenge (Berg et al., 2010), which is an image dataset
organized according to the WordNet hierarchy. From
this huge dataset we chose 31 classes (synsets)4 for the

4quail, partridge, hare, Angora rabbit, wood rabbit, in-
dri, Madagascar cat, orangutan, chimpanzee, gorilla, fire
engine, garbage truck, pickup truck, trailer truck, police
wagon, recreational vehicle, half track, snowmobile, trac-

Hierarchical Regularization Cascade for Joint Learning

(a) (b)

Figure 10. Accuracy comparison. In all plots the ’Y’-axis
corresponds to the average accuracy over all tasks, and
the ’X’-axis to the sample size. (a) Results for Synthetic
data experiment. (b) results for the large size imagenet
experiment.

set of pre-trained known classes with many training ex-
amples. This group of classes was chosen heuristically
to contain varying levels of relatedness among classes,
grouping together various terrestrial, aerial and sea ve-
hicles, buildings, sea animals etc. For the novel classes
with small sample we considered 30 randomly chosen
classes from the remaining 969 classes in the dataset.
The set of features used to describe images in this data
set is based on the Sift features quantized into a code-
book of 1000 words, which was tf-idf normalized.

We considered binary learning tasks where each chosen
class, either pre-trained or novel, is contrasted with a
set of images (negative examples) chosen from a group
of different classes. The negative set was constructed
in two ways: In the 1-vs-rest condition the negative
set of classes, the Rest, was defined as the group of
31 classes from which knowledge is transferred. In the
second condition the negative set included 31 differ-
ent classes sampled randomly from the original dataset
excluding the small sample classes and the set of pre-
trained classes. In this second condition all classes,
both pre-trained and novel, had the exact same set of
negative examples. This condition resembles previous
experiments with knowledge-transfer (Zweig & Wein-
shall, 2007), where all tasks share the same negative
set.

In both conditions the pre-trained models were trained
using 480 positive examples and 480 negative exam-
ples. For the positive set of the small sample classes,
we considered a sample size in the range 1-20. For the
negative set we used all examples from each negative

tor, tricycle, fiddler crab, king crab, silver salmon, rain-
bow trout, striper, airliner, warplane, lifeboat, catamaran,
boathouse and church building.

(a) (b)

Figure 11. Mid-size experiment accuracy results, with (a)
common negative set, and (b) 1-vs-rest. In all plots the
’Y’-axis corresponds to the average accuracy of all tasks,
and the ’X’-axis to the sample size.

group (480 examples per class in the 1-vs-rest condi-
tion and 480 in total in the second condition). Exam-
ples were weighted according to sample size. For the
pre-trained models we used a validation set of 60 ex-
amples per class; we used 100 examples per each class
as its test set.

We considered each of the novel 30 classes separately.
The experiment was repeated 8 times with different
random splits of the data, for both the pre-trained and
novel tasks. In the batch knowledge transfer methods
we set the projection rank to maintain 99.9% of the
variance in the original models learnt.

Results for the condition with shared negative set are
shown in Fig. 11a. Results for the 1-vs-rest condi-
tion are shown in Fig. 11b. We see that knowledge-
transfer methods achieve improved performance as
compared to the alternative. In both conidtions the
best performer is the hierarchical batch approach for
Knowledge-transfer, KT-Batch-H. The poor perfor-
mance of the KT-Online-L12 can be explained by
the fact that the regularization coefficient φ chosen
by cross-validation during the multi-task pre-learning
phase of the pre-trained models was chosen to be very
low, indicating that a single level of sharing is not suf-
ficient for this data.

D.1.3. Large size

As the ultimate knowledge transfer challenge, we
tested our method with real data and large prob-
lem size. Thus we used all 1000 classes from the
ILSVRC(2010) challenge (Berg et al., 2010). Each im-
age was represented by a vector of 21000 dimensions,
following the representation scheme used by (Zhao
et al., 2011). 900 classes were chosen randomly as pre-
trained classes, while the remaining 100 classes were
used as the novel classes with small sample. We con-

Hierarchical Regularization Cascade for Joint Learning

sidered 1-vs-rest tasks as explained above. Pre-trained
tasks were trained using 500 examples from the posi-
tive class and 500 examples chosen randomly from the
remaining 899 classes. We used the online Algorithm 2
with 2 repetitions over the training data to train pre-
trained tasks.

During test, the set of negative examples in the 1-
vs-rest condition was chosen randomly from all of the
dataset, total of 999 classes. We used the labeled test
set provided by (Berg et al., 2010). As small sam-
ple we considered 1-20 examples per class. Due to
the original large image representation, in the batch
knowledge-transfer methods we fixed the projection
rank to maintain only 80% of the variance in the orig-
inal models learnt.

We note that once the pre-trained models are com-
puted, each step of training with the projected batch
approach is faster than each step of the online ap-
proach as the online Algorithm 4 needs at each step
to consider all the pre-trained parameters in order to
compute the regularization value, while the batch Al-
gorithm 3 considers these parameters only once during
the projection phase. Using a big image representation
as we do the online methods becomes computationally
expensive if repeating the experiment for each of the
novel small samples classes separately.

Results are shown in Fig. 10b. Clearly all methods in-
ducing information sharing outperformed significantly
the batch and online learning with no sharing. The
NoKT-on-NoReg method performed poorly similarly
to NoKT-batch and was omitted for brevity. KT-on-
L12 also preformed poorly due to the very low regu-
larization parameter φ automatically chosen.

