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Abstract
In many fields one encounters the challenge of
identifying, out of a pool of possible designs,
those that simultaneously optimize multiple
objectives. This means that usually there
is not one optimal design but an entire set
of Pareto-optimal ones with optimal trade-
offs in the objectives. In many applications,
evaluating one design is expensive; thus, an
exhaustive search for the Pareto-optimal set
is unfeasible. To address this challenge, we
propose the Pareto Active Learning (PAL)
algorithm which intelligently samples the de-
sign space to predict the Pareto-optimal set.
Key features of PAL include (1) modeling
the objectives as samples from a Gaussian
process distribution to capture structure and
accomodate noisy evaluation; (2) a method
to carefully choose the next design to evalu-
ate to maximize progress; and (3) the abil-
ity to control prediction accuracy and sam-
pling cost. We provide theoretical bounds on
PAL’s sampling cost required to achieve a de-
sired accuracy. Further, we show an exper-
imental evaluation on three real-world data
sets. The results show PAL’s effectiveness;
in particular it improves significantly over a
state-of-the-art multi-objective optimization
method, saving in many cases about 33%
evaluations to achieve the same accuracy.
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1. Introduction
A fundamental challenge in many problems in engi-
neering and other domains is to find the right balance
amongst several objectives. As a concrete example, in
hardware design, one often has to choose between dif-
ferent candidate designs that trade multiple objectives
such as energy consumption, throughput, or chip area.
Usually there is not a single design that excels in all
objectives, and therefore one is interested in identify-
ing all (Pareto-)optimal designs. Furthermore, often
in these domains, evaluating the objective functions is
expensive and noisy. In hardware design, for example,
synthesis of only one design can take hours or even
days. The fundamental problem addressed in this pa-
per is how to predict the Pareto-optimal set at low
cost, i.e., by evaluating as few designs as possible.
In this paper we propose a solution that we call the
Pareto Active Learning (PAL) algorithm. PAL has
several key features. It captures domain knowledge
about the regularity in the design space by using Gaus-
sian process (GP) models to predict objective values
for designs that have not been evaluated yet. Fur-
ther, it uses the predictive uncertainty associated with
these nonparametric models in order to guide the iter-
ative sampling. Specifically, PAL’s sampling strategy
aims to maximize progress on designs that are likely to
be Pareto-optimal. A set of classification rules iden-
tifies designs that are Pareto-optimal and not Pareto-
optimal with high probabilty; PAL terminates when
all designs are classified. Finally, PAL is parameter-
ized to enable an intuitive, user-controlled tradeoff be-
tween sampling cost and prediction accuracy.
A main contribution of this paper is the theoretical
performance analysis of PAL that provides bounds on
the sampling cost required to achieve a desired accu-
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racy. These bounds involve the use and quantification
of the so-called hypervolume error, a metric that is
commonly used in multiobjective optimization.
Finally, we carry out an extensive empirical evaluation,
where we demonstrate PAL’s effectiveness on sev-
eral real-world multiobjective optimization problems.
Two of these problems (Zuluaga et al., 2012b; Almer
et al., 2011) are from different applications in the do-
main of hardware design, in which it is very expen-
sive to run low level synthesis to obtain the exact cost
and performance of a single design. The third prob-
lem is from software optimization (Siegmund et al.,
2012) where different compilation settings are evalu-
ated for performance and memory footprint size. We
compare the performance of PAL against a state-
of-the-art multi-objective optimization method called
ParEGO (Knowles, 2006). Across all data sets and al-
most all desired accuracies PAL outperforms ParEGO,
requiring usually about 33% less evaluations.

1.1. Related Work
We now discuss different lines of related work.
Evolutionary algorithms. One class of approaches
uses evolutionary algorithms to approximate the
Pareto frontier using a population of evaluated de-
signs that is iteratively evolved (Künzli et al., 2005;
Coello et al., 2006; Zitzler et al., 2002). Most of
these approaches do not use models for the objectives,
and consequently cannot make predictions about un-
evaluated designs. As a consequence, a large num-
ber of evaluations is typically needed for convergence
with reasonable accuracy. To overcome this challenge,
model-based (or “response surface”) approaches ap-
proximate the objectives by models, which are fast
to evaluate. The best among these appears to be
ParEGO (Knowles, 2006), which also uses GP models
of the objective functions. We will compare against
this approach.
Scalarization to the single-obective setting. An
alternative approach to multi-objective optimization
problems is the reduction to a single-objective prob-
lem (for which a wealth of methods are available).
This is commonly done via scalarization, for example
by considering convex combinations of the objective
functions (Boyd & Vandenberghe, 2004). As a con-
crete example, Zhang et al. (2010) proposes a multi-
objective evolutionary algorithm framework that de-
composes the optimization problem into several single-
objective subproblems. A predictive model based on
Gaussian processes is built for every subproblem, and
sample candidates are selected based on their expected
improvement. A major disadvantage of the scalar-
ization approach is that without further assumptions
(e.g., convexity) on the objectives, not all Pareto-

optimal solutions can be recovered (Boyd & Vanden-
berghe, 2004). Therefore, we avoid scalarization in our
approach.
Heuristics-based methods. Instead of weighted
combinations, numerous domain-specific heuristics
have been proposed that aim at identifying Pareto-
optimal solutions. These approaches typically combine
search algorithms to suit the nature of the problem (D.
et al., 2008; Palermo et al., 2009; Zuluaga et al., 2012a)
and defy theoretical analysis to provide bounds on the
sampling cost. With this work we aim at creating a
method that generalizes across a large range of appli-
cations and target scenarios and that is analyzable,
i.e., comes with theoretical guarantees.
Single-objective active learning and Bayesian
optimization. In the single-objective setting, there
has been much work on active learning, in particular
classification (see, e.g., Settles (2010) for an overview).
For optimization, model-based approaches are used to
address settings where the objective is noisy and ex-
pensive to evaluate. In particular in Bayesian opti-
mization (see Brochu et al. (2010)), the objective is
modeled as a sample from a stochastic process (often
a Gaussian process). The advantage of this approach
is the flexibility in encoding prior assumptions (e.g.,
via choice of the kernel and likelihood functions), as
well as the ability to guide sampling: several different
(usually greedy) heuristic criteria have been proposed
to pick the next sample based on the predictive uncer-
tainty of the Bayesian model. A common example is
the EGO approach of Jones et al. (1998), which uses
the expected improvement. Recently, Srinivas et al.
(2010) analyzed the GP-UCB criterion, and proved
global convergence guarantees and rates for Bayesian
optimization. We build on their results to establish
guarantees about our PAL algorithm in the multi-
objective setting.

1.2. Main Contributions
In summary, our main contributions include:
• the PAL algorithm, which efficiently (i.e., with few

evaluations) identifies the set of Pareto-optimal de-
signs in a multi-objective scenario with expensive
evaluations, and which allows user control of accu-
racy and sampling cost;
• the analysis of PAL that provides theoretical

bounds on the algorithm’s sampling cost to achieve
a desired target accuracy;
• an experimental evaluation to demonstrate PAL’s

effectiveness on three real-world multi-objective
optimization problems.
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Figure 1. Example of a Pareto frontier in the objective
space for n = 2 objectives.

2. Background and Problem Statement
We consider a multi-objective optimization problem
over a finite1 subset E (called the design space) of Rd
for some d ∈ N. This means we wish to simultaneously
optimize n objective functions f1, . . . , fn : E 7→ R. We
use the notation f(x) = (f1(x), . . . , fn(x)) to refer to
the vector of all objectives evaluated on the input x.
The objective space is the image f(E) ⊂ Rn.2
Pareto-optimality. The goal in multi-objective op-
timization is to identify the Pareto frontier of f . For-
mally, we consider the canonical partial order in Rn:
y � y′ iff yi ≤ y′i, 1 ≤ i ≤ n, and define the induced
order on E: x � x′ iff f(x) � f(x′). The set P ⊆ E
of maximal (or Pareto-optimal) points in this order de-
termines the Pareto frontier f(P ). Figure 1 visualizes
these concepts for n = 2 objectives.
The interest of finding Pareto-optimal points in the
design space is clear: they represent the best compro-
mises amongst the chosen objectives and are the only
designs that need to be considered in an application.
Problem statement. In many applications, evaluat-
ing the objectives f1, . . . , fn is expensive. Therefore,
we wish to identify the Pareto-optimal set P ⊂ E with-
out evaluating all inputs x ∈ E. Our goal is to develop
an active learning algorithm that iteratively and adap-
tively selects a sequence of designs x1,x2, . . . to be
evaluated and that uses this evaluation to classify all
designs as Pareto optimal or not. The algorithm ter-
minates when all designs are classified and returns a
prediction P̂ of the Pareto-optimal set P .
Prediction quality. A fundamental difference be-
tween single- and multi-objective optimization is that
for the latter it is not obvious which metric to use to
evaluate the prediction quality. A very natural pro-
posed solution uses the so-called hypervolume (Zitzler
et al., 2007), to compute the volumes enclosed by the
actual Pareto frontier f(P ) and its prediction f(P̂ ).
Formally, we first assume that all the fi are non-

1While our results can be generalized, we focus on the
finite setting to simplify exposition.

2Scalars and functions that evaluate on scalars are writ-
ten unbolded; vectors and tuples of functions are boldfaced.

negative (a property that can be established by suit-
able shifting if the minimum is known). The hyper-
volume V (P ) of a Pareto-optimal set P ⊂ E is the
volume of the area

⋃
p∈P {y ∈ Rn : 0 � y � f(p)} en-

closed between the origin and f(P ). In Fig. 1 this area
is shaded gray. The hypervolume of an arbitrary set
S ⊂ E is defined similarly after all dominated points
in S have been removed. The quality of a prediction
P̂ is then given by the hypervolume error

η = V (P )− V (P̂ ), (1)

which is always positive. The trivial prediction P̂ = E
has error 0; thus, an important feature of a reasonable
algorithm is that P̂ contains few dominated points.
It is clear that prediction is only possible under certain
assumptions about f , which are introduced next.
Gaussian processes. We model f as a sample from
an n-variate Gaussian process (GP) distribution. A
GP distribution over a univariate real function f(x)
is fully specified by its mean function µ(x) and its
covariance function k(x,x′) (Rasmussen & Williams,
2006). The kernel or covariance function k captures
regularity in the form of the correlation of the marginal
distributions f(x) and f(x′).
In our multi-objective setting, we model each objective
function fi(x) as a sample from an independent3 GP
distribution.
On every iteration t in our algorithm we choose a
design xt to evaluate, which yields a noisy sample
yt,i = fi(xt) + νt,i; after T iterations we have a vec-
tor yT,i = (y1,i, . . . , yT,i). Assuming νt,i ∼ N(0, σ2)
(i.i.d. Gaussian noise), the posterior distribution of fi
is a Gaussian process with mean µT,i(x), covariance
kT,i(x,x′), and variance σ2

T,i(x):

µT,i(x) = kT,i(x)T (KT,i + σ2I)−1yT,i, (2)
kT,i(x,x′) = ki(x,x′)

− kT,i(x)T (KT,i + σ2I)−1kT,i(x′), (3)
σ2
T,i(x) = kT,i(x,x), (4)

where x,x′ ∈ E, kT,i(x) = (ki(x,xt))1≤t≤T and
KT,i = (ki(xj ,x`))1≤j,`≤T . Note that this posterior
distribution captures our uncertainty about f(x) for
points x ∈ E that have not been evaluated yet. We
now design an active learning algorithm informed by
this uncertainty.

3. PAL Algorithm
In this section we describe our algorithm: Pareto
Active Learning (PAL). Our approach to predicting
Pareto-optimal points in E is to train GP models (see

3Note that dependence among the outputs could be cap-
tured as well; e.g., (Bonilla et al., 2008).
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above) with a small subset of E. The models predict
the objective functions fi, 1 ≤ i ≤ n, allowing us to
identify points in E that are Pareto-optimal with high
probability. A point x, that has not been sampled, is
predicted as f̂(x) = µ(x) = (µi(x))16i6n. Addition-
ally σ(x) = (σi(x))16i6n is interpreted as the uncer-
tainty of this prediction. We capture this uncertainty
through the hyperrectangle4

Qµ,σ,β(x)={y :µ(x)−β1/2σ(x)�y�µ(x)+β1/2σ(x)},
(5)

where β is a scaling parameter to be chosen later.
We use this uncertainty information to guide our sam-
pling and to make a probabilistic assumption on the
optimality of every point x. Since we are only inter-
ested in Pareto-optimal points, our algorithm aims at
sampling the design space E such that the predictions
generated for f(x) are more accurate for points x that
are likely to be Pareto-optimal.
At every iteration t, the algorithm uses the predictions
µt(x) and the uncertainties σt(x) to classify a point
x as Pareto-optimal, or not Pareto-optimal. However,
some points may remain unclassified. Then, the next
sample to evaluate in the design space is chosen to
further reduce the number of unclassified points. The
training process is terminated when all points are clas-
sified; the points classified as Pareto-optimal are then
returned as the prediction P̂ for P .
The pseudocode in Algorithm 1 outlines our approach.
After intialization we iterate until a stopping criterion
is met; every iteration t consists of three stages: mod-
eling, classification, and sampling. These are discussed
next including the stopping criterion.
Modeling. We use Gaussian process inference to pre-
dict the mean vector µt(x) and the standard deviation
vector σt(x) of any x ∈ E considering the former eval-
uations. Each point x ∈ E is then assigned its uncer-
tainty region, which is the hyperrectangle

Rt(x) = Rt−1(x) ∩Qµt,σt,βt+1(x), (6)
where βt+1 is a positive value that defines how large
this region is in proportion to σt. Hereby R−1(x) =
Rn. In Section 4 we will suggest a value for this pa-
rameter. The iterative intersection ensures that all
uncertainty regions are non-increasing with t.
Within Rt(x), the pessimistic and optimistic outcomes
are min(Rt(x)) and max(Rt(x)), respectively, both
taken in the partial order � and unique.
Classification. Our algorithm maintains three sets
that partitions E: in iteration t, Pt is the set of points
that are predicted to be Pareto-optimal, Nt the set
of points that are predicted to be not Pareto-optimal,
and Ut the set of yet unclassified points. In each iter-
ation t, each x is assigned to exactly one of the these

4Pessimistically bounding the ellipsoid with radii σi.

Algorithm 1 The PAL algorithm.
Input: design space E; GP prior µ0,i, σ0, ki for all 1 ≤ i ≤

n; ε; βt for t ∈ N
Output: predicted-Pareto set P̂
1: P0 = ∅, N0 = ∅, U0 = E {classification sets}
2: S0 = ∅ {evaluated set}
3: R0(x) = Rn for all x ∈ E
4: t = 0
5: repeat
6: Modeling
7: Obtain µt(x) and σt(x) for all x ∈ E

{µt(x) = y(x) and σt(x) = 0 for all x ∈ St}
8: Rt(x) = Rt−1(x) ∩Qµt,σt,βt+1 (x) for all x ∈ E
9: Classification

10: Pt = Pt−1, Nt = Nt−1, Ut = Ut−1
11: for all x ∈ Ut do
12: if there is no x′ 6= x such that min(Rt(x)) + ε �

max(Rt(x′))− ε then
13: Pt = Pt ∪ {x}, Ut = Ut \ {x}
14: else if there exists x′ 6= x such that

max(Rt(x))− ε � max(Rt(x′)) + ε then
15: Nt = Nt ∪ {x}, Ut = Ut \ {x}
16: end if
17: end for
18: Sampling
19: Find wt(x) for all x ∈ (Ut ∪ Pt) \ St
20: Choose xt+1 = arg maxx∈(Ut∪Pt)\St{wt(x)}
21: t = t+ 1
22: Sample yt(xt) = f(xt) + νt
23: until Ut = ∅
24: P̂ = Pt

classes. Our algorithm is monotonic in that Pt and
Nt are non-decreasing sets with respect to t. In other
words, as soon as a point x is classified as Pareto-
optimal (or not Pareto-optimal), it remains classified
as such. Further, our classification is relaxed by a pa-
rameter ε, which informally means inequalities are con-
sidered “up to a small error ε”, where ε = (ε, . . . , ε). ε
is an input to the algorithm.
At iteration t, the points in Pt−1 and Nt−1 keep their
classification. The only points x to be reclassified are
those in Ut−1, done as follows:
• If the pessimistic outcome min(Rt(x)) of x is not

dominated by the optimistic outcome max(Rt(x′))
of any other point (up to a shift of ε by both),

min(Rt(x)) + ε � max(Rt(x′))− ε,

then x is classified as Pareto-optimal.
• If the optimistic outcome max(Rt(x)) of x is dom-

inated by the pessimistic outcome min(Rt(x′)) of
any x′ (up to a shift of ε by both),

max(Rt(x))− ε � min(Rt(x′)) + ε,

then x is classified as non-Pareto-optimal.
• All other points remain unclassified.
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Intuitively, the parameter ε speeds up classification at
the cost of accuracy, since it makes the requirements
less strict. Figure 2 shows for n = 2 and ε = 0 an
example of a classification at some iteration t.
Sampling. After the classification is done, a new
point xt is selected for sampling with the following
selection rule. Each point x ∈ E is assigned a value

wt(x) = max
y,y′∈Rt(x)

||y − y′||2,

which is the length of the diagonal of its uncertainty
region Rt(x). Among the points x ∈ Pt ∪ Ut, the one
with the largest wt(x) is chosen as the next sample xt
to be evaluated. We refer to wt(xt) as wt.
Intuitively, this rule biases the sampling towards ex-
ploring, and thus improving the model for, the points
most likely to be Pareto-optimal.

f1(x)

f2(x)

d
(max(Rt(x)) + ✏

d
(min(Rt(x)) + ✏

d
wT + 2

p
2✏

d

d
Rt(x) of a point classified as Pareto-optimal
Rt(x) of a point classified as not-Pareto optimal
Rt(x) of an unclassified point
Sampled points classified as not-Pareto optimal
Next sample

Figure 2. Classification and sampling example for n = 2
and ε = 0.

Stopping criteria. The training process stops after,
say, T iterations when all points in E are classified,
i.e., when UT = ∅. The prediction returned is P̂ = PT .
The selection of the parameter ε used in the classifica-
tion rule impacts both the accuracy and the sampling
cost T of the algorithm.

4. Theoretical Analysis
In this section we analyze the sample complexity of
PAL. Of key importance in the convergence analysis
is the effect of the regularity imposed by the kernel
function k. In our analysis, this effect is quantified
by the maximum information gain associated with the
GP prior. Formally, we consider the information gain

I(y1 . . .yT ;f) = H(f)−H(f | y1 . . .yT ),

i.e, the reduction of uncertainty on f caused by (noisy)
observations of f on the T first sampled points. The
crucial quantity governing the convergence rate is

γT = max
y1...yT

I(y1 . . .yT ;f),

i.e., the maximal reduction of uncertainty achievable
by sampling T points. Intuitively, if the kernel k im-

poses strong regularity (smoothness) on f , few sam-
ples suffice to gather much information about f , and as
a consequence γT grows sublinearly (exhibits a strong
diminishing returns effect). In contrast, if k imposes
little regularity (e.g., is close to diagonal), γT grows
almost linearly with T . Srinivas et al. (2010; 2012)
established γT as key quantity in bounding the regret
in single-objective GP optimization. Here, we show
that this quantity more broadly governs convergence
in the much more general problem of predicting the
Pareto-optimal set in multi-criterion optimization.
The following theorem is our main theoretical result.
Theorem 1. Let δ ∈ (0, 1). Running PAL with
βt = 2 log(n|E|π2t2/(6δ)), the following holds with
probability 1− δ.
To achieve a maximum hypervolume error of η, it is
sufficient to choose

ε = η(n− 1)!
2nan−1 , (7)

where a = maxx∈E,1≤i≤n{
√
β1ki(x,x)}.

In this case, the algorithm terminates after at most T
iterations, where T is the smallest number satisfying√

T

C1βT γT
≥ nan−1

η(n− 1)! . (8)

Here, C1 = 8/ log(1 − σ−2), and γT depends on the
type of kernel used.
This means that by specifying δ and a target hypervol-
ume error η, PAL can be configured through the pa-
rameter ε to stop when the target error is achieved with
confidence 1−δ. Additionally, the theorem bounds the
number of iterations T required to obtain this result.
Later, in Corollary 2, we will specialize the theorem to
the case of a squared exponential kernel.
Our strategy for the proof consists of three parts. In
Section 4.1, we first analyze how wt decreases with t.
We then relate ε and wt to ensure the classification of
all points and thus the termination of the algorithm.
In Section 4.2, we relate wt to the hypervolume error
in the predicted Pareto frontier.
Finally, in Section 4.3 we analyze the scenario in which
PAL is run with the squared exponential kernel.

4.1. Reduction in Uncertainty
The first step of the proof is to show that with proba-
bility at least 1− δ, f(x) falls for all x ∈ E within the
uncertainty region (see (5) and (6)):

Rt(x) = Qµ0,σ0,β1(x) ∩ · · · ∩Qµt,σt,βt+1(x),

which is achieved by choosing βt =
2 log(n|E|π2t2/(6δ)).
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f1(x)

f2(x)
d

V (P̂o)
V (P̂p)
d

d
max(RT (x))

min(RT (x))

d
max(RT (x))

min(RT (x))

Figure 3. Example situation after termation.

Srinivas et al. (2010) showed that information gain can
be expressed in terms of the predicted variances. Sim-
ilarly, we show how the cumulative

∑t
k=1 wk can also

be expressed in terms of maximum information gain
γt. Since the sampling and classification rules used by
PAL guarantee that wt decreases with t, we get the
following bound for wt. With probability ≥ 1− δ,

wt ≤
√
C1βtγt
t

for all t ≥ 1, (9)

where C1 = 8/ log(1− σ−2) and βt is as before.
This means that, with high probability, wt is bounded
by O∗(

√
γt/t), where O∗ is a variant of the O nota-

tion that hides log factors. The proof is supported by
Lemmas 3 to 7 found in the supplementary material of
this paper. Key challenges and differences in compar-
ison to Srinivas et al. (2010) include (1) dealing with
multiple objectives; (2) the use of a different sampling
criterion; and (3) incorporating the monotonic classi-
fication scheme.
We also show that, with probability 1 − δ, all points
will be classified at iteration T if

wT
2 ≤ ε. (10)

This is proved in Lemma 11 found in the supplemen-
tary material of this paper.

4.2. Reduction in Hypervolume Error
We derive a bound on the hypervolume error (1) that
is achieved once all points have been classified after T
iterations and P̂ is returned. As example see Fig. 3,
where P̂ has five elements, one of which has been eval-
uated (uncertainty due to noise is not shown). With
probability 1− δ, the points in f(P ) lie inside the un-
certainty regions RT (x), x ∈ P̂ . Hence, in this case
η = V (P )− V (P̂ ) ≤ V (P̂o)− V (P̂p), where P̂o, P̂p are
the sets of the optimistic (max(RT (x)) and pessimistic
(min(RT (x)) outcomes, respectively, of the points in
P̂ . The difference is colored gray in Fig. 3.
Using wT , the length of the largest diagonal of any
RT (x), x ∈ P̂ , η is bounded by

η ≤ nan−1wT
(n− 1)! , (11)

where a is defined as in Theorem 1. The proof is pre-
sented in Lemma 12, which is found in the supplemen-
tary material of this paper. Combining (11) with (10)
and (9) yields the results from Theorem 1.

4.3. Explicit Bounds for the Squared
Exponential Kernel

Theorem 1 holds for general GP models for f(x), with
prior µ and covariance function k(x,x′). Srinivas et al.
(2010) derived bounds for γT depending on the choice
of kernel for the GP. These can be used to specialize
Theorem 1.
We illustrate this using the squared exponential ker-
nel as example, i.e., k(x,x′) = exp

(
l−2‖x− x′‖2

2
)

for
some l > 0. From (Srinivas et al., 2010), for n = 1,
there exists a constant K such that

γt ≤ K logd+1 t for all t > 1.

For n > 1, since we assume i.i.d. GPs, we thus get

γt ≤ Kn logd+1 t

and hence the following corollary to Theorem 1.
Corollary 2. Let ki for all 1 ≤ i ≤ n be the squared
exponential kernels used by PAL. When choosing δ ∈
(0, 1), a target hypervolume error η, and an ε that sat-
isfies (7), the following holds with probability 1 − δ.
PAL terminates after at most T iterations, where T
is the smallest number satisfying√

T log(1− σ−2)

4K
√

log(n|E|π2T 2/(6δ)) logd+1 T
≥ nan−1

η(n− 1)! .

This result suggests that T increases as η decreases in
the following manner: Asymptotically, for any ρ > 0,
as well as fixed n and d, we have T = O( 1

η2+ρ ).

5. Implementation Details
We now discuss some aspects that arise when imple-
menting and using our PAL algorithm.
Parameterization. For practical usage, two param-
eters, namely ε and βt, need to be specified. These pa-
rameters relate to the desired level of accuracy of the
prediction. Although we provide theoretical bounds,
these may be loose in practice, and it may be useful to
choose more “aggressive” values than recommended by
the theory. The choice of βt impacts the convergence
rate of the algorithm, since it scales the uncertainty re-
gions Rt(x). Since the analysis is conservative, scaling
down βt, possibly to be constant, is a viable option.
In contrast, the choice of ε should pose no problem.
One only may consider, in contrast to our simplify-
ing assumption, to choose in ε components of different
magnitude, proportional to the range of the objectives.
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Absolute versus relative values. In our exposition,
we consider absolute values for f and thus η, wt, ε and
others. In particular for the hypervolume error η this
poses a problem since, for example, averaging along
one objective fi will underemphasize errors for small
values of fi. In contrast to the single-objective case,
the relative average error in this case cannot be re-
trieved from the absolute average error. This problem
can be solved by transforming all objectives with the
logarithm and then running PAL in the log domain.
We take this approach in our experiments later.
Kernel hyper-parameters. So far, we have as-
sumed, the kernel function is given. Usually, its pa-
rameters need to be chosen. Therefore, prior to run-
ning PAL, it may be practical to randomly sample a
small fraction of the design space, and optimizing the
parameters (e.g., by maximizing the marginal likeli-
hood). One may also consider updating the hyperpa-
rameters as new points are evaluated.

6. Experiments
We evaluate PAL on three real world data sets ob-
tained from different applications in computer science
and engineering. We assess the reduction in hypervol-
ume error versus the number of evaluations required
to obtain it for different settings of the accuracy pa-
rameter ε. Further, we compare with a state-of-the-
art multi-objective optimization method based on evo-
lutionary algorithms, ParEGO (Knowles, 2006), us-
ing an implementation provided by the authors and
adapted to run with our data sets. ParEGO also uses
GP modeling to aid convergence.
Before presenting the results we introduce the data
sets, discuss the use of log scale, and explain the ex-
perimental setup.
Data sets. The first data set, called SNW, is taken
from Zuluaga et al. (2012b). The design space consists
of 206 different hardware implementations of a sorting
network for 256 inputs. Each design is characterized
by d = 4 parameters. The objectives are area and
throughput when synthesized for a field-programmable
gate array (FPGA) platform. This synthesis is very
costly and can take up to many hours for large designs.
The second input set, called NoC, is taken from Almer
et al. (2011). The design space consists of 259 different
implementations of a tree-based network-on-chip, tar-
geting application-specific circuits (ASICs) and multi-
processor system-on-chip designs. Each design is de-
fined by d = 4 configurations. The objectives are en-
ergy and runtime for the synthesized designs run on
the Coremark benchmark workload. Again, the eval-
uation is very costly. The third data set, called SW-
LLVM, is taken from (Siegmund et al., 2012). The
design space consists of 1023 different compiler set-

Data Set d n |E|

SNW 4 2 206
NoC 4 2 259
SW-LLVM 11 2 1023

Table 1. Data sets used in our experiments.

tings for the LLVM compiler framework. Each setting
is specified by d = 11 binary flags. The objectives are
performance and memory footprint for a given suite
of software programs when compiled with these set-
tings. Note that the Pareto-optimal set consists of
one point only. The main characteristics of the data
sets are summarized in Table 1; note that in all cases
n = 2. To obtain the ground truth, we completely
evaluated all data sets to determine P in each case.
This was very costly, most notably, it took 20 days
for NoC alone. The evaluations are plotted in Fig. 4;
the Pareto frontiers are emphasized. All the data is
normalized so that all objectives are to be maximized.
Use of logarithmic scale. As explained in Sec-
tion 5, we applied the base-e logarithm to every ob-
jective function, thus ensuring that relative instead of
absolute values are considered. This also allows us to
obtain an average percentage error for the prediction
P̂ with respect to each objective, based on the hyper-
volume error ηT .
Formally, we define the average percentage error after
termination for objective 1 as

ET,1(P̂ ) = (1− e−
ηT
a2 ) · 100,

where a2 = maxx∈E{f2(x)}; ET,2 analogously.
Experimental setup. Our implementation of PAL
uses the Gaussian Process Regression and Classifi-
cation Toolbox for Matlab (Rasmussen & Nickisch,
2010). In our experiments we used the squared expo-
nential covariance function with automatic relevance
determination. We fixed the standard deviation of the
noise ν to 0.1, and scaled β

1/2
t down by a factor 5

as suggested by Srinivas et al. (2010). The training
set was initialized with m = max{0.02|E|, 15} sam-
ples chosen uniformly at random.
All of the experiments were repeated 200 times and
the average outcomes are shown in the plots. Addi-
tionally, several values of ε were evaluated, we used
ε = (εi)1≤i≤2, where εi is proportional to the range of
fi: maxx∈E{fi(x)} − minx∈E{fi(x)}. We start with
ε = 0.001% of each range and increase it through dou-
bling up to 0.512%.
Quality of Pareto frontier prediction. Fig. 5
shows a set of experiments in which we do both explore
the effect of choosing ε and compare against the evo-
lutionary algorithm ParEGO (Knowles, 2006). Every
plot in Fig. 5 corresponds to one data set in Table 1.
In each case, the x-axis shows the number t of evalua-



Active Learning for Multi-Objective Optimization

0.06 0.08 0.10 0.12 0.14

log(f1)

2

4

6

8

10

12

14

16

lo
g
(f

2
)

SNW (|E| =206)

0 2 4 6 8 10 12 14 16

log(f1)

2.0

2.5

3.0

3.5

lo
g
(f

2
)

NoC (|E| =259)

0.124 0.126 0.128 0.130 0.132

log(f1)

3.5

4.0

4.5

5.0

lo
g
(f

2
)

SW-LLVM (|E| =1023)

Pareto frontier

Pareto frontier 

Pareto frontier 
Pareto frontier 

Figure 4. Objective space of the input sets use in our experiments.
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Figure 5. Avg. percentage error in f1 vs. number of evaluations after termination; for PAL different values for ε are used.

tions (sampling cost) of f . For PAL this is T (the total
number of iterations) plus the evaluations of designs
in P̂ that have not been evaluated yet while running
PAL. On the y-axis, we show the average percentage
error (as defined above) for the first objective. The
results corresponding to the second objective function
are analogous and can be found in Fig. 7 of the sup-
plementary material of this paper.
ParEGO (green line) uses a heuristic to find the num-
ber of samples m of the starting population depending
on the characteristics of the design space. Hence the
line always starts with a certain minimum number of
evaluations. We measure the error at each iteration
m < t < 150, and plot (t, Et,1) and (t, Et,2).
As expected, the error in all cases decreases with in-
creasing number of evaluations. We observe that PAL
in almost all cases significantly improves over ParEGO.
Only for NoC and high accuracy, the peformance of
ParEGO is slightly better. At the other extreme the
gains on SW-LLVM are considerable. In most cases,
for a fixed desired accuracy, PAL requires about 33%
less evaluations than ParEGO.
The plots also show the effect of choosing ε on the
termination of PAL. As expected a larger ε causes
PAL to stop earlier. Further, the continuous doubling
(since the data is in the log domain) of ε shows to offer
fine grain control over termination.

7. Conclusions
In this paper we addressed the challenging problem of
predicting the set of Pareto-optimal solutions in a de-
sign space from the evaluations of only a subset of the
designs. We use Gaussian processes to predict the ob-
jective functions and to guide the sampling process in
order to improve the prediction of the Pareto optimal
set. PAL can be intuitively parameterized to achieve
the desired level of accuracy at the lowest possible
evaluation cost. We presented an extensive theoreti-
cal analysis including bounds for the required number
of evaluations to achieve the target accuracy. Finally,
we demonstrated the effectiveness of our approach on
three case studies obtained from real engineering ap-
plications. Our results show that we offer better cost-
performance trade-offs in comparison to ParEGO. In
most cases, for a desired accuracy, PAL requires about
33% less evaluations. Moreover, we showed that our
parameterization strategy provides a wide range of
cost-performance trade-offs.
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Generation of Streaming Sorting Networks. In De-
sign Automation Conference (DAC), 2012b.


