Active Learning for Multi-Objective Optimization

A. Theoretical Analysis and
Asymptotic Bounds

This section provides the proofs of Theorem 1, which
follows from Lemmas 3 to 12.

Lemma 3. Given § € (0,1) and B¢ = 2log(n|E|m:/9d),
the following holds with probability > 1 —4:

file) = pe14(x) < B %001 4(x)
foralll <i<n,x € FE, forallt>1. (12)

In other words, with probability > 1 —4:
f(x) € Ri(x) for allx € E, forallt>1

Proof. According to Lemma 5.1 in (Srinivas et al.,
2012), the following inequality holds:

br {fi(w) = pe-i(@) > 53/2%—1,1(9’3)} < ehe/?

Applying the union bound for i,¢ € N, we obtain that
the following holds with probability > 1 —n|E|e~ /2

fi@) = p—1(®) < B %0114()
forall1<i<mn, forall x € E. (13)

The lemma holds by choosing n|E|e= /2 = §/m;. As
suggested in (Srinivas et al., 2010), we can use m; =
22 /6. O

Lemma 4. Ifn=1 and f; = (f(x:))1<i<r, then

T
Hyg: 1) = 3 Y los(1 + 07207 (@),

t=1

This is directly taken from Lemma 5.3 in (Srinivas
et al., 2010). I(yy; fr) defines the mutual information
between f and observations yr = fr + er, where
€T ~ N(0,0'2I).

Lemma 5. Given 6 € (0,1) and 8y = 2log(n|E|mt/9),
the following holds with probability at least 1 — §:

T
> w; < BrCuI(yy; fr) < CiBryr for all T > 1,
t=1

where C7 = 8/ log(1 + o~ 2).

Proof. One of the rectangles of which R;(x;) is the in-

tersection has a diagonal length of 253/2”0}71(%)\\22
as a consequence,

w; < ABilloi—i ()3

As By is increasing, we have that
n
2 -2 2
4810 g o Ut—l,i(mt)
i=1

4Bro°Cy Yy log(1+0 207 ;(21))

i=1

—2
w; <

IN

with Co = o072/log(l + 072) > 1, since s2
Colog(1 + s2) for 0 < s < 072, and 0720?,1@(%)
U_2k5i($t,wt) < o2

Using C; = 802C5 and Lemma 4 we have that

INIA

T n
Sw; < BrCi Yy Iy fr.)
=1 i=1

< BrCil(yr; fr)

O

Lemma 6. Given é € (0,1) and 8, = 2log(n|E|n./9),
the following holds with probability > 1 —d:

T
Zwt <NCLTBpyr for oll T > 1
t=1

Proof. This follows from Lemma 5, since (Zz wy)? <
T Zthl w? by the Cauchy-Schwarz inequality. O

Lemma 7. Running PAL with a monotonic classifi-
cation, it holds that w; decreases with t.

Proof. As a direct consequence of the sample picking
rule, wy_1(xs) < Wi—1. On the other hand, w(x) <
wi—1(x) and thus, w; < w—1(x;). The lemma follows.

O

Lemma 8. Running PAL with 6 € (0,1) and ; =
2log(n|E|mt/d), the following holds:

Pr{wT < ,/% for all T > 1} >1-4, (14)

where Cy = 8/log(1 — 0=2) and m; = w°t2/6.

Proof. This is derived from Lemmas 6 and 7, since
T _ _
Yoo W/ T > Wy,
O

Corollary 9. When running PAL with squared expo-
nential kernels k; for all 1 <1i < n, the following holds
with probability > 1 —§:

_ \/n log?tt T(logT + logn — log d)
0 T

O*(n2T~ %) (15)
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Lemma 10. If when running PAL at iteration t', a
point x is classified as not Pareto-optimal, i.e. x €
Ny, it can be removed from E as it is not needed for
the classification of points in Uy . This means that no
point ' € U for t > t' has to be compared with x to
attempt its classification at time t > t'.

Proof. To attempt the classification of a point ' € Uy,
PAL searches for other points in F that may dom-
inate ' under different outcomes, considering their
corresponding uncertainty regions R;. If a point x is
classified as not Pareto-optimal, there exist at least a
point &” € (P, U U;) such that ” = x. Then x can
be ignored since if © = z’ then =" = x’.

O

Lemma 11. If when running PAL, at iteration t
Wy S 26, then Ut+1 = @

Proof. We show that if a point is not classified as
Pareto-optimal, then it is classified as not Pareto-
optimal, when w; < 2e.

If a point x is not classified as Pareto-optimal, then
there is a point =’ such that

min(R;(z)) + € < max(Ri(z')) — €, (16)

We define a point v(x) € R" =
(v1(x),...,vn(x)). Thus,

with € = (e,...,€).
max(R:(x)) —min(R(x)) =
16 is equivalent to

min(R:(z)) + € < min(Ri(z')) + v(z) — €.

If there is a point @’ that meets the relation in (16)
and w; < 2¢, then &’ meets the following condition
that classifies & as not Pareto-optimal

min(Ry(x)) + v(x) — € < min(R(z')) + €,

since v;(x) < Wy, for all 1 <4 < n and for all €
P,UU;, and w; — € < €. W is an upper bound of
|| max (R (x)) — min(R(x))||2 for all points that are
in P, and U;. As shown in Lemma 10, points in NV; do
not have to be considered in the classification.

O

Lemma 12. Let§ € (0,1), B, = 2log(n|E|n*t?/(69)),

a; = maxgep{\/Oiki(z,x)}, and a = maxi<;<n{a;}.

The following holds with probability 1 — 6.

The hypervolume error obtained by PAL at iteration

T when all points have been classified is bounded as:
n—1

< 22
(n—1)!

. n3/2qn—1
=0 (Fm 1)

(wr), (17)

In particular,

f2(z)

az

boundary of P,

boundary of Pp _

Figure 6. Example of hypervolume error bound for n = 2.

Proof. Let 1,, = (1,...,1)T and let e; denote the ith
canonical base vector, all assumed € R™. The length
of every (one-dimensional) side of a hyperrectangle as-
sociated with a point in P is bounded by the length
of its diagonal wp. Hence the distance between the
boundaries defined by P, and ]5,, along the direction
1,, is bounded by /nwr (the diagonal of a hypercube
with side length w;).
a; is the maximum value that f;(x can have, with
probability 1 — 4. a; = maxmeE{«/ﬁl (z,x } is a
bound obtained from the width of the conﬁdence re-
gions, given the Gaussian process prior distribution.
Let a; = a;e;. The projection a;, 1 < ¢ < n,
onto the hyperplane H,, = (1,)1 is an n-simplex S,,.
V(P,)—V(P,), and hence nr, are bounded by the vol-
ume of S,, times /nw;.
We compute an upper bound on the volume of S,,. The
projection of a; onto H, is a; = a;(e; — 1/n1), which
has length a;1/1 — 1/n. The a; enclose pairwise the
same angle; hence the volume of S,, is bounded by the
volume of a regular n-simplex with radius a/1 — 1/n,
a = maxji<;<n{a;}. Using known formulas, this vol-
ume is /na""*/(n — 1)!. Multiplying by \/nw; yields
the desired result.
The second assertion is immediate from (15).

O

Note that we can get a bound independent of n by
summing over all n in (17) to get

nr < e®wr.

Figure 6 shows an example for n = 2, where the sim-
plex is a line. The area between the boundaries of b,
and P, is hence bounded by v/2wz multiplied by the
length of the simplex S, which is formed by the two

sides of length: a14/1 —1/2 and as+/1 — 1/2. There-

fore, nr < 2awr for n = 2.
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Figure 8. Percentage hypervolume error vs. number of evaluations

B. Experiments and Comparison with
Random Sampling.

Fig. 7 shows the error obtained in fo when PAL stops,
for different values of €. The results for f; are shown
in Fig. 5. The z-axis shows the total number of eval-
uations of f required to obtain the percentage error
on the Pareto prediction displayed on the y-axis of the
plots.

We also compare PAL with a variation of PAL that se-
lects the points to evaluate at random from the points
that have not been evaluated. At every iteration ¢ after
initialization, we generate a prediction P, by adding
the Pareto-optimal points of the unclassified points
(using predictions p,) to the set P, that contains the

required by every b,

points that have been classified as Pareto-optimal at
iteration t. We then calculate the error and the cost of
this prediction as it has been done in Section 6. Fig-
ure 8 shows the results for our three data sets when
using an € = 0.001% of each range of f,. PAL shows
for all data sets better results than PAL with Ran-
dom sampling, with significantly better results found
with the SNW data set. This clearly shows the effec-
tiveness of our sampling strategy in evaluating points
that are relevant to achieve the goal of predicting the
Pareto-frontier of a design space.



