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Abstract

How does the activity of one person affect
that of another person? Does the strength
of influence remain periodic or decay ex-
ponentially over time? In this paper, we
study these critical questions in social net-
work analysis quantitatively under the frame-
work of multi-dimensional Hawkes processes.
In particular, we focus on the nonparametric
learning of the triggering kernels, and pro-
pose an algorithm MMEL that combines the
idea of decoupling the parameters through
constructing a tight upper-bound of the ob-
jective function and application of Euler-
Lagrange equations for optimization in infi-
nite dimensional functional space. We show
that the proposed method performs signif-
icantly better than alternatives in exper-
iments on both synthetic and real world
datasets.

1. Introduction

Real world interactions between multiple entities, such
as earthquake aftershocks (Vere-Jones, 1970), civilian
death in conflicts (Lewis et al., 2011) and user behav-
iors in social network (Mitchell and Cates, 2010), often
exhibit the self-exciting and mutually-exciting prop-
erty. For example, the time of aftershocks are usually
close to the main shock and may trigged further after-
shocks in the future. Multi-dimensional Hakwes pro-
cesses, an important class of mutually exciting process,
can be used to capture these interactions.
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Formally, the multi-dimensional Hawkes process is
defined by a U -dimensional point process Nu

t , u =
1, . . . , U , with the conditional intensity for the u-th
dimension expressed as follows:

λu(t) = µu +
∑

i:ti<t

guui
(t− ti),

where µu ≥ 0 is the base intensity for the u-th Hawkes
process. The kernel guu′(t) ≥ 0 captures the mutually-
exciting property between the u-th and u′-th dimen-
sion. Intuitively, it captures the dynamics of influence
of events occurred in the u′-th dimension to the u-
th dimension. Larger value of guu′(t) indicates that
events in u′-th dimension are more likely to trigger a
event in the u-th dimension after a time interval t.

Despite the usefulness of the mutually exciting prop-
erty in real world problems, the actual dynamics of how
previous events trigger future events, which is modeled
by the triggering kernels guu′(t), can be quite complex
and vary a lot across different applications. For exam-
ple, the dynamics of user behaviors in social network
can be very different from those in earthquake after
shocks or disease contagion. Moreover, these dynam-
ics can be inherently complex since the diverse nature
of user behaviors. Unfortunately, most existing work
based on Hawkes processes assumes that the trigger-
ing kernels are known or chosen manually in advance,
which trends to be oversimplified or even infeasible
for capturing the problem complexity in many appli-
cations. Therefore, it is highly desirable to estimate
the temporal dynamics in a principled data-driven way
rather than relying on ad-hoc manual selections.

In this paper, we propose a general framework to esti-
mate the triggering kernels of Hawkes processes from
the recurrent temporal events that can be viewed as
samples from the Hawkes processes — without the
knowledge of the actual triggering structure in the
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events. The challenge of the problem arises not only
from the fact that the parameters is in an infinite di-
mensional space but also they are coupled with each
other in the likelihood function. To address the prob-
lem, we proposeMMEL which applies idea of majoriza-
tion minimization (Hunter and Lange, 2003) to con-
struct an upper-bound of the objective function at
each iteration that decouples the parameters so that
they can be optimized independently. Another nov-
elty of our method is that we used the Euler-Lagrange
equation to derive an ordinary differential equation
(ODE) that the optimal trigger kernel should sat-
isfy. This connection allows us to exploit the fruit-
ful and well-developed techniques of ODE solvers. In
our experiments on both synthetic and real world
datasets, the proposed method performs significantly
better than alternatives.

The rest of the paper is organized as follows: In Sec-
tion 2, we briefly summarize related work in Hawkes
process, smoothing splines and kernel learning. In
Section 3, we describe the multi-dimensional Hawkes
model in details, together with the proposed algorithm
for estimating the triggering kernel. In Section 4, the
results on both numerical simulations and real-world
applications are reported and analyzed. Finally, we
conclude our work and discuss future directions in Sec-
tion 5.

2. Related Work

Mutually-exciting point processes are frequently used
to model continuous-time events where the oc-
currences of previous events increase the possibil-
ity of future events. Hawkes processes (Hawkes,
1971), an important type of mutually-exciting pro-
cess, have been investigated for a wide range of
applications such as market modeling (Toke, 2010),
earth quake prediction (Marsan and Lengliné, 2008),
crime modeling (Stomakhin et al., 2011). Addition-
ally, (Simma and Jordan, 2012) models cascades of
events using marked Poisson processes with marks rep-
resenting the types of events while (Blundell et al.,
2012) propose a model based on Hawkes processes
that models events between pairs of nodes. The prob-
lem of nonparametric estimation of the triggering ker-
nels has been addressed for special cases such as the
one-dimensional Hawkes processes (Lewis and Mohler,
2011) or symmetric Hawkes processes (Bacry et al.,
2012). In this work, we study the general case of multi-
dimensional Hawkes process under the framework for
optimizing the triggering kernels in the infinite dimen-
sional functional space. The recent work of (Du et al.,
2012) considers the problem of learning the triggering

kernel for diffusion processes based on linear combi-
nation of basis functions. Our proposed method, on
the other hand, does not assume any known paramet-
ric forms of basis functions and estimate them from
observed data through optimization in an infinite di-
mensional functional space.

Another related direction of studies is smoothing
splines (Reinsch, 1967; Wahba, 1990) in the sense that
the problem of estimating the triggering kernels can
be viewed as a smoothing problem with nonnegative
constraints. The goal of smoothing splines is to esti-
mate a smooth function based on its value on finite
points. The nonnegative constraints are usually stud-
ied as the more general case of the shape restrictions
(Reinsch, 1967; Mammen and Thomas-agnan, 1998;
Turlach, 1997). The main difference in our work is
that the loss function we consider is more complex and
depends on the values of the triggering kernels on in-
finite points, which makes it difficult to directly apply
the smoothing spline methods. Moreover, as we will
see later, the nonnegative constraints can be naturally
enforced in our algorithm.

Positive definite kernels have also been used exten-
sively in machine learning. This type of kernel can
be viewed as similarity function between data points.
Its learning has been addressed extensively in re-
cent literature where one tries to learn a better posi-
tive definite kernel by combining several positive defi-
nite kernels (Cortes et al., 2012; Argyriou et al., 2006;
Bach, 2008; Dinuzzo et al., 2011; Sonnenburg et al.,
2006). Nonparametric positive kernel learning, instead
of learning combination of existing positive kernels, di-
rectly learns the full Gram matrix with respect to cer-
tain constraints and prior knowledges about the data,
such as pairwise constraints (Hoi et al., 2007) or dis-
tribution of the data (Zhu et al., 2004).

3. Nonparametric Triggering Kernel

Estimation using Euler-Lagrange

Equations

We collect the parameters of the multi-dimensional
Hawkes process into matrix-vector forms, µ = (µu)
for the base intensity and G = (guu′(t)) into a matrix.
These parameters can be estimated by optimizing the
log-likelihood over the observed events that are sam-
pled from the process.

3.1. Optimization Problem and Space

Suppose we have m samples, {c1, . . . , cm}, from the
multi-dimensional Hawkes process. Each sample c is
a sequence of events observed during a time period
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of [0, Tc], which is in the form of {(tci , u
c
i )}

nc

i=1. Each
pair (tci , u

c
i ) represents an event occurring at the uc

i -
th dimension at time tci . Thus, the log-likelihood of
model parameters Θ = {G,µ} can be expressed as
follows (Liniger, 2009):

L(Θ) =
∑

c

(

nc
∑

i=1

log λuc
i
(tci )−

U
∑

u=1

∫ Tc

0

λu(t)dt

)

=
∑

c





nc
∑

i=1

log
(

µuc
i
+
∑

tc
j
<t

guc
i
uc
j
(tci − tcj)

)

−Tc

U
∑

u=1

µu −

U
∑

u=1

nc
∑

j=1

∫ Tc−tj

0

guuc
j
(s)ds



 . (1)

In general, the triggering kernels guu′(t) as well as the
base intensity µ can be estimated by maximizing the
log-likelihood, i.e., minguu′ (t)≥0,µ≥0 −L(Θ).

We assume that the triggering kernels guu′(t) can be
expressed by linear combination of a set of D base
kernels. Formally, we have

guu′(t) =

D
∑

d=1

aduu′gd(t),

where {gd(t)|d = 1, 2, . . . , D} are the base kernels and
aduu′ are the coefficients for the linear combination. In
our work, both aduu′ and gd(t) are estimated from the
data. In particular, we propose to estimate the base
kernels gd(t) from an infinite dimensional functional
space. To this end, we consider the following penal-
ized log-likelihood function function, i.e., minΘ Lα(Θ),
where the penalized log-likelihood function Lα(Θ) is
defined as follows:

Lα(Θ) = −L(Θ) + α





∑

d

R(gd) +
∑

u,u′,d

(aduu′)2



 .

Here the first term is the negative log-likelihood of the
parameters and the second term represents the regu-
larization of both the base function gd(t) and the co-
efficient aduu′ . The parameter α determines the trade-
off between these two terms. Moreover, the functional
R(gd) is a penalty term preferring smooth base kernels.
In general, the choice of the penalty should take into
account of the prior knowledge of the triggering kernels
and thus is application-dependent. For the sake of con-
creteness and tractability, we use R(g) =

∫∞

0
g′(t)2dt

in the rest of our paper, where g′(t) is the derivative
of g(t) with respect to t.

It appears that the above problem is similar to the
smoothing splines and can be solved through meth-
ods that transform the above problem to a finite di-
mensional least squares optimization problem (Wahba,

1990). As we discussed in Section 2, however, the main
difference is that the log-likelihood function defined in
Equation (1) contains the integral over the triggering
kernels that depends on the values of the triggering
kernels over the whole time interval rather than only a
finite number of points as required by the smoothing
splines. As a result, it is difficult to directly apply the
smoothing spline methods in our case.

Even more challenging is that the above objective
function is difficult to optimize in general due to the
fact that the parameters are not only infinite dimen-
sional but also are coupled. In this paper, inspired
by Lewis and Mohler (2011), we propose MMEL which
combines the idea of constructing a tight upper-bound
as a surrogate to decouple parameters and the appli-
cation of Euler-Lagrange equations to deal with the
infinite dimensionality of the parameters.

3.2. Iterative Algorithm

Our algorithm updates the parameters Θ in an iter-
ative manner which, as we will show later, ensures
that the objective function Lα decrease monotoni-
cally. In particular, we construct a tight upper-bound
Q(Θ|Θ(k)) for current parameter estimation Θ(k) and
optimize the upper-bound Q(Θ|Θ(k)) to obtain the
updates for the parameters. Specifically, the upper-
bound Q(Θ|Θ(k)) is defined as follows:

Q(Θ|Θ(k)) = −
∑

c

[

nc
∑

i=1

(

pcii log
µuc

i

pcii
+

i−1
∑

j=1

D
∑

d=1

pcijd log
aduc

i
uc
j
gd(t

c
i − tcj)

pcijd



+

(

Tc

∑

u

µu+

U
∑

u=1

nc
∑

j=1

D
∑

d=1

∫ τc
j

0



(aduuc
j
)2
g
(k)
d (t)

2a
d,(k)
uuc

j

+ g2d(t)
a
d,(k)
uuc

j

2g
(k)
d (t)



 dt









+ α





∑

d

R(gd) +
∑

u,u′,d

(aduu′)2



 , (2)

where τ cj = Tc − tcj and pcij and pcii are defined as
follows:

pcii =
µ
(k)
uc
i

µ
(k)
uc
i
+
∑i−1

j=1

∑

d a
d,(k)
uiuj g

(k)
d (tci − tcj)

,

pcijd =
a
d,(k)
uiuj g

(k)
d (tci − tcj)

µ
(k)
uc
i
+
∑i−1

j=1

∑

d a
d,(k)
uiuj g

(k)
d (tci − tcj)

.

Intuitively, pcijd can be interpreted as the probability
that the i-th event is influenced by a previous event j
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through the d-th base kernel and pcii is the probabil-
ity that i-th event is sampled from the base intensity.
Thus, the first two terms of Q(Θ|Θ(k)) can be viewed
as the joint probability of the unknown influence struc-
tures and the observed events.

As is further shown in the Appendix, the following
properties hold for Q(Θ;Θ(k)) defined in Equation (2):

1. For all Θ and Θ(k), Q(Θ;Θ(k)) ≥ Lα(Θ).

2. Q(Θ(k); Θ(k)) = Lα(Θ
(k)).

The above two properties imply that if Θ(k+1) =
argminΘ Q(Θ;Θ(k)), we have Lα(Θ

(k)) ≥ Lα(Θ
(k+1)).

Thus, optimizing Q with respect to Θ at each itera-
tion ensures that the value of Lα(Θ) decrease mono-
tonically.

Update for µu and aduu′ . Moreover, the advantage
of optimizing Q(Θ|Θ(k)) is that all parameters gd and
aduu′ can be solved independently from each other in
closed form, and the non-negativity constraints are au-
tomatically taken care of. Specifically, we have the
following update rules for µu and aduu′ :

µ(k+1)
u =

1
∑

c Tc





∑

c

nc
∑

i=1,uc
i
=u

pcii



 (3)

a
d,(k+1)
uu′ =





a
d,(k)
uu′

∑

c

∑

i:uc
i
=u

∑

j<i,uc
j
=u′ pcijd

∑

c

∑

j:uc
j
=u′

∫ Tc−tc
j

0 g
(k)
d (t)dt+ α





1

2

(4)

Update for gd. The corresponding update for gd can
be derived by optimizing in an infinite dimensional
space. Specifically, for every d = 1, . . . , D, we con-
sider the terms in Q(Θ|Θ(k)) that are related to gd as
follows:

min
gd∈L1(R)

−
∑

c





nc
∑

i=1

i−1
∑

j=1

pcijd log gd(t
c
i − tcj)

−

U
∑

u=1

nc
∑

j=1

∫ Tc−tci

0

g2d(t)
a
d,(k)
uuc

j

2g
(k)
d (t)

dt



+ αR(gd). (5)

The solution of the above minimization problem satis-
fies the Euler-Lagrange equation (see also Appendix):

−
D(t)

gd(t)
+ C(t)gd(t)− 2αg′′d (t) = 0, (6)

where

C(t) =
∑

c

U
∑

u=1

nc
∑

j=1

a
d,(k)
uuc

j

g
(k)
d (t)

I[t ≤ Tc − tci ]

D(t) =
∑

c

nc
∑

i=1

i−1
∑

j=1

pcijdI[t = tci − tcj ],

Algorithm 1 (MMEL) for estimating parameters

Input: Observed samples {c1, . . . , cm}.
Output: Estimation of µu, a

d
uu′ and gd.

Initial µu, auu′ and gd randomly.
while not converge do

Update µu, auu′ by Equation (3) and (4) for
u, u′ = 1, . . . , U .
for d=1,. . . , D do

while not converge do

Solve Equation (7) for m = 1, 2, . . . ,M .
end while

end for

end while

where I[·] is the indicator function which returns 1 if
the predicate in parameter is true and 0 otherwise. We
solve the above ODE numerically using the following
Seidel type iterations which is quite efficient. Specifi-
cally, we discretized the differential equation over small
intervals m∆t, for m = 1, . . . ,M , as follows:

−2α
gd,m+1 − 2gdm + gd,m−1

∆t2
+ Cmgdm =

Dm

gdm
, (7)

where gdm = gd(m∆t) and

Cm =
1

g
(k)
d (m∆t)

∑

c

U
∑

u=1

nc
∑

j=1

a
d,(k)
uuc

j
I[m∆t ≤ Tc − tci ]

Dm =
1

∆t

∑

c

∑

i,j:m∆t≤tc
i
−tc

j
<(m+1)∆t

pcijd

Therefore, we can solve for gd,m by fixing all other
gd,m′ , m′ 6= m but solving the above quadratic equa-
tion. We summary the proposed algorithm in Algo-
rithm 1.

4. Experiments

In this section, we conduct experiments on both syn-
thetic and real-world datasets to evaluate the perfor-
mance of the proposed method MMEL.

4.1. Toy Data

In order to illustrate that the proposed method can
estimate the triggering kernels from data very accu-
rately, we first conduct a set of experiments in toy data
sets of 2-dimensional Hawkes processes. The goal is to
visualize and compare the triggering kernels estimated
from data to the ground-truth.

Data Generation. The true parameters of the 2-
dimensional Hawkes process are generated as follows:
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Figure 1. Estimated vs. True Triggering Kernels on toy
data DataExp with exponential kernels. The four sub-
figures show both the true triggering kernels and the es-
timated ones from the data

the base intensity µ1 = µ2 = 0.1. We generate two
data sets with different triggering kernels: 1) Data-

Exp. In the first data set, we use the exponential
kernel g(t) = exp(−t), one of the most widely used
trigger kernel for Hawkes processes, to demonstrate
that the proposed algorithm can obtain good estima-
tions in this case. 2) DataCos. In this case, we con-
sider relatively complex kernels rather than simple ex-
ponential kernels. Specifically, in this case, the trig-
gering kernels are generated by the linear combination
of two base functions: g1(t) = cos(πt/10) + 1.1 and
g2(t) = cos(π(t/10 + 1)) + 1.1. In both data sets, the
coefficients of the linear combinations are generated
from a uniform distribution on [0.1, 0.2].

Results. We generate 100,000 samples from the two
2-dimensional Hawkes processes described above on
time interval [0, 20] as the training sets and run MMEL

on the sampled data to obtain the estimations for the
triggering kernels. In order to visualize the estimated
kernels and compare them to the ground truth, we plot
both the estimated and the true kernels for each pairs
of dimensions. In Figure 1, we plot the triggering ker-
nel obtained from the data by MMEL together with
the true exponential kernel. We can observe that the
estimated and true kernels almost overlap each other,
which indicates that the estimated triggering kernels
are very accurate in this case.

In Figure 2, we visualize the triggering kernels learnt
from the DataCos data set. It can be observed that
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Figure 2. Estimated vs. True Triggering Kernels on toy
data DataCos. The four sub-figures show both the true
triggering kernels and the estimated ones from the data

the proposed MMEL can reconstruct the kernels quite
accurately from the data: The estimated kernel is very
close to the true kernel in most places, although the
estimated kernel may diverge from the ground-true in
a few points. The proposed algorithm generally works
quite well in this case since our method do not as-
sume any parametric forms of the triggering kernels.
Another observation is that MMEL tends to under-
estimate the triggering kernels at their peak points
while overestimate them at valleys. In fact, similar
bias exists in a lot of nonparametric estimators which
is related to the curvature of the function. Several
methods has been proposed to correct this problem
(Sain and Scott, 2002). Thus, we leave this problem
for future investigation.

4.2. Synthetic Data

Data Generation. A relatively large synthetic data
set is generated as follows: We consider Hawkes pro-
cesses of U = 300 dimensions with base intensity µu

sampled from a uniform distribution over [0, 0.001] for
each u. The triggering kernels are the linear combi-

nations of three base functions: gd(t) =
cos(2πt/wd)+2

t+2
where wd = 1, 3, 5 for d = 1, 2, 3, respectively. The
coefficients of the linear combinations are generated
from a uniform distribution on [0, 0.1]. We generate
200,000 samples from the multi-dimensional Hawkes
process as training set and another disjoint 200,000
samples as test set. We run the above process for five
times and the performance are reported by the average



Learning Triggering Kernels for Multi-dimensional Hawkes Processes

-7.265e+07

-7.255e+07

-7.245e+07

 40000  80000  120000  160000  200000

L
o
g
L
ik

Number of Training Samples

(a) LogLik

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 40000  60000  80000  100000 120000 140000 160000 180000 200000

D
if
f

Number of Training Samples

TrueKernel
ExpKernel-1
ExpKernel-2
ExpKernel-3

MMEL

(b) Diff
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over five data sets.

Evaluation Metrics. We use two evaluation met-
rics LogLik and Diff to evaluate the proposed method.
Specifically, LogLik is defined as the log-likelihood on
the test set of 200,000 samples that is disjoint with
the training set. Diff measures the relative distances
between the estimated and true kernels as follows:

diff =
1

U2

U
∑

u=1

U
∑

u′=1

∫

(ĝuu′(t)− guu′(t))2dt
∫

guu′(t)2dt
,

where ĝuu′(t) and guu′(t) are the estimated and true
kernels between dimension u and u′, respectively.

Baselines. We compare the proposed MMEL with
the following baselines to demonstrate its effectiveness:

• ExpKernel. In this method, the triggering kernel
is assumed to be fixed to be the exponential ker-
nel g(t) = 1

w exp(−t/w) which is one of the most
widely used kernels for multi-dimensional Hawkes
process. In this work, we use w = 1, 3, 5 as base-
lines and label them as ExpKernel-1, ExpKernel-3
and ExpKernel-5, respectively.

• TrueKernel. In this method, we assume that the
bases gd(t) used to generate the data are known
and fixed. Only the coefficients are estimated

from the data. This method is used as an upper-
bound to show that how the proposedMMEL algo-
rithm can perform in the ideal situation that the
true bases for the triggering kernels are known.

Results. We train models with MMEL as well as the
baselines on the training set. For MMEL, we use regu-
larization parameter α = 1000 and discretize the ODE
with M = 3000 intervals. In Figure 3, we present the
performance on the synthetic data set with respect
to the number of training data. From Figure 3, we
can observe that the performance of all methods im-
proves as the number of training data grows, which
indicates that more training data can improve the per-
formance. Comparing the performance of methods us-
ing exponential kernels, i.e., ExpKernel-1, ExpKernel-3
and ExpKernel-5, we can observe that the selection of
the parameters for the exponential kernel can greatly
impact the performance, which confirms that the trig-
gering kernels plays a central role in multi-dimensional
Hawkes processes.

The proposed method MMEL performs significantly
better than the method using exponential kernels with
respect to both metrics. Moreover, its performance is
very close to TrueKernel, the method that fixes the
base kernels to be the ground-truth and does not es-
timate them from data. Therefore, we conclude that
the MMEL can estimate the triggering kernels very ac-
curately.
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In Figure 4, we present the performance ofMMELmea-
sured by LogLik with respect to the number of base
kernels. In our previous experiments on the synthetic
data set, we set the number of base kernel to be 3,
which is the true value used to generate the data. It
is interesting to observe that slightly larger number of
base kernels such as 4 can archive better performance.

In Figure 5, we investigate the number of intervals M
used to discretize the ordinary differential equation in
Equation (6). In particular, we vary M in range of 100
to 3000 and plot the performance measured by LogLik.
From Figure 5, we can see that when the number of
intervals is relatively large (≥ 1000), the performance
is quite good and stable.

In Figure 6, we show that the performance measured
by LogLik on both training and test sets with respect
to the number of iterations of MMEL. It can be ob-
served that the performance on both training and test
sets increases as the number of iterations grows and
converges after 100 iterations. In Figure 7, we present
the performance measured by LogLik on the test set
with respect to the value of regularization parameter
α. We can observe that small values of α usually re-
duce the performance, while the performance is quite
stable for α between [1000, 10000].

4.3. Real World Data

We also evaluate the proposed method on a real world
data set. To this end, we use the MemeTracker data
set1. The data set contains the information flows cap-
tured by hyper-links between different sites with times-
tamps. In particular, we first extract the top 100 pop-
ular sites and the links between them. The events are
in the form that a site created a hyper-link to another
site at a particular time. We use 50% data as training
data and 50% as test data. In this data set, we use
D = 1 and α = 10.

In Figure 8, we present the performance measured
by the negative log-likelihood on test set for MMEL,

1http://memetracker.org

ExpKernel-1, ExpKernel-3 and ExpKernel-5 on the
MemeTracker data set. We can observe that MMEL

outperforms all the baselines, which indicates that
MMEL can capture the dynamics of the temporal
events more accurately. We also tried to fix the ker-
nel to be other forms such as cosine functions. The
performance is much worse, which suggests the im-
portance of the triggering kernel. In order to further
investigate the performance, we transform the events
by the fitted model based on the time rescaling the-
orem (Papangelou, 1972), and generate the quantile-
quantile (Q-Q) plot with respect to the exponential
distribution, since it is the theoretical distribution for
the perfect model of intensity functions as shown by
the theorem. Generally speaking, Q-Q plot visualizes
the goodness-of-fit for different models. The perfect
model follows a straight line of y = x. In Figure 9, we
present the Q-Q plot for MMEL, ExpKernel-1 and Pois-

son, which is the Poisson process model with constant
intensity. We can observe that MMEL are generally
closer to the straight line, which suggests that MMEL

can fit the data better than other models.

In Figure 10, we plot the base kernel estimated from
the data by MMEL. The base kernel has quite intuitive
in the sense that in the first several days, the estimated
base kernel has relatively large values, which can be
explained by the fact that new blogs or webpages are
more likely to be related to hot topics and thus are
more likely to trigger further discussions. The base
has relatively small values at almost all other points,
except for two small peaks as we can observe in the
figure. We think it reflects the long-term discussions
of some topics.

5. Conclusions

In this paper, we address the problem of learning
the triggering kernels, which capture the underlying
temporal dynamics of the observed events, for multi-
dimensional Hawkes processes. In particular, we es-
timate the triggering kernels from the data through
optimizing the penalized log-likelihood function in infi-

http://memetracker.org
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Figure 8. Performance measured by negative log-likelihood
on MemeTracker data set.

Figure 9. Q-Q plot for comparing the transformed events
with respect to the exponential distribution.

nite dimensional spaces. An iterative algorithmMMEL

is proposed to optimized the penalized log-likelihood
function effectively. The optimization problem in in-
finite dimensional functional space is transformed to
solving an ordinary differential equation which is de-
rived from the Euler-Lagrange equation. Experimen-
tal results on both synthesis and real-world data set
show that the proposed method can estimate the trig-
gering kernels more accurately and thus provide better
models for recurrent events.

There are several directions that are interesting for
further investigation: First, we can extend this work
to more general case of the spatial-temporal pro-
cess, where the triggering kernel defined on multi-
dimensional spaces rather than 1-dimensional real
lines. Moreover, we plan to study more applications
for the proposed method by considering different con-
straints on the triggering kernel, e.g., monotonic con-
straints.
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Appendix

Majorization Minmization. First, we claim that
the following properties hold for Q(Θ;Θ(k)) defined in
Equation (2) :
1. For all Θ and Θ(k), Q(Θ;Θ(k)) ≥ Lα(Θ).

2. Q(Θ(k); Θ(k)) = Lα(Θ
(k)).

Proof. The first claim can be shown by utilizing the
Jensen’s inequality: For all c and i, we have

log(µuc
i
+

i−1
∑

j=1

D
∑

d=1

aduc
i
uc
j
gd(t

c
i − tcj))

≥pcii log
uc
i

pcii
+

i−1
∑

j=1

D
∑

d=1

pcijd
aduc

i
uc
j
gd(t

c
i − tcj)

pcijd

Moreover, by the inequality of arithmetic and geomet-
ric means:

(aduuc
j
)2
g
(k)
d (t)

2a
d,(k)
uuc

j

+ g2d(t)
a
d,(k)
uuc

j

2g
(k)
d (t)

≥ aduuc
j
gd(t)

By noting that summation and integration preserve
the above two inequalities, we prove the first claim.

The second claim can be checked by setting gd(t) =

g
(k)
d (t), aduu′ = a

d,(k)
uu′ and µu = µ

(k)
u .

Euler-Lagrange Equation. The optimization prob-
lem in Equation (5) is equivalent to minimize L[g, g′] =
∫∞

0
F (g, g′)dt, where

F (g, g′) = −
∑

c

nc
∑

i=1

i−1
∑

j=1

pcijd log gd(t)I[t = tci − tcj ]

+
∑

c

U
∑

u=1

nc
∑

j=1

g2d(t)
a
d,(k)
uuc

j

2g
(k)
d (t)

I[t ≤ Tc − tci ] + α2(g
′
d(t))

2

By Euler-Lagrange equation, the solution satifies

∂F

∂gd
−

d

dt
[
∂F

∂g′d
] = 0

Substitute F into the above equation, we get the ordi-
nary differential equation for solving gd(t) in Equation
(6).
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