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Abstract

Traditional algorithms for stochastic opti-
mization require projecting the solution at
each iteration into a given domain to ensure
its feasibility. When facing complex domains,
such as the positive semidefinite cone, the
projection operation can be expensive, lead-
ing to a high computational cost per itera-
tion. In this paper, we present a novel al-
gorithm that aims to reduce the number of
projections for stochastic optimization. The
proposed algorithm combines the strength
of several recent developments in stochastic
optimization, including mini-batches, extra-
gradient, and epoch gradient descent, in or-
der to effectively explore the smoothness and
strong convexity. We show, both in ex-
pectation and with a high probability, that
when the objective function is both smooth
and strongly convex, the proposed algorithm
achieves the optimal O(1/T ) rate of conver-
gence with only O(log T ) projections. Our
empirical study verifies the theoretical result.

1. Introduction

The goal of stochastic optimization is to solve the op-
timization problem

min
w∈D

F (w),

using only the stochastic gradients of F (w). In partic-
ular, we assume there exists a gradient oracle, which
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for any point w ∈ D, returns a random vector ĝ(w)
that gives an unbiased estimate of the subgradient of
F (·) at w. A special case of stochastic optimization is
the risk minimization problem, whose objective func-
tion is given by

F (w) = E(x,y) [ℓ(w; (x, y))] ,

where (x, y) is an instance-label pair, ℓ is a convex
loss function that measures the prediction error, and
the expectation is taken oven the unknown joint dis-
tribution of (x, y) (Zhang, 2004; Shalev-Shwartz et al.,
2009; Hu et al., 2009). The performance of stochastic
optimization algorithms is typically characterized by
the excess risk

F (wT )− min
w∈D

F (w),

where T is the number of iterations and wT is the
solution obtained after making T calls to the gradient
oracle.

For general Lipschitz continuous convex functions,
stochastic gradient descent exhibits the unimprovable
O(1/

√
T ) rate of convergence (Nemirovski & Yudin,

1983; Nemirovski et al., 2009). For strongly convex
functions, the algorithms proposed in very recent
works (Juditsky & Nesterov, 2010; Hazan & Kale,
2011; Rakhlin et al., 2012; Chen et al., 2012) achieve
the optimal O(1/T ) rate (Agarwal et al., 2012). Al-
though these convergence rates are significantly worse
than the results in deterministic optimization, stochas-
tic optimization is appealing due to its low per-
iteration complexity. However, this is not the case
when the domain D is complex. This is because most
stochastic optimization algorithms require projecting
the solution at each iteration into domain D to en-
sure its feasibility, an expensive operation when the
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domain is complex. In this paper, we show that if the
objective function is smooth and strongly convex, it is
possible to reduce the number of projections dramati-
cally without affecting the convergence rate.

Our work is motivated by the difference in conver-
gence rates between stochastic and deterministic op-
timization. When the objective function is smooth
and convex, under the first-order oracle assumption,
Nesterov’s accelerated gradient method enjoys the op-
timal O(1/T 2) rate (Nesterov, 2004; 2005). Thus, for
deterministic optimization of smooth and convex func-
tions, we can achieve an O(1/

√
T ) rate by only per-

forming O(T 1/4) updating. When the objective func-
tion is smooth and strongly convex, the optimal rate
for first-order algorithms is O(1/αk), for some con-
stant α > 1 (Nesterov, 2004; 2007). In other words,
for deterministic optimization of smooth and strongly
convex functions, we can achieve an O(1/T ) rate by
only performing O(log T ) updating. The above obser-
vations inspire us to consider the following questions.

1. For Stochastic Optimization of Smooth and Con-
vex functions (SOSC), is it possible to maintain
the optimal O(1/

√
T ) rate by performing O(T 1/4)

projections?
2. For Stochastic Optimization of Smooth and

Strongly Convex functions (SOS2C), is it possible
to maintain the optimal O(1/T ) rate by perform-
ing O(log T ) projections?

For the 1st question, we have found a posi-
tive answer from literature. By combining mini-
batches (Roux et al., 2008) with the accelerated
stochastic approximation (Lan, 2012), we can achieve
the optimal O(1/

√
T ) rate by performing O(T 1/4) pro-

jections (Cotter et al., 2011). However, a naive appli-
cation of mini-batches does not lead to the desired
O(log T ) complexity for SOS2C. The main contribu-
tion of this paper is a novel stochastic optimization al-
gorithm that answers the 2nd question positively. Our
theoretical analysis reveals, both in expectation and
with a high probability, that the proposed algorithm
achieves the optimal O(1/T ) rate by only performing
O(log T ) projections.

2. Related Work

In this section, we provide a brief review of the existing
approaches for avoiding projections.

2.1. Mini-batches based algorithms

Instead of updating the solution after each call to the
gradient oracle, mini-batches based algorithms use the
average gradient over multiple calls to update the so-

lution (Roux et al., 2008; Shalev-Shwartz et al., 2011;
Dekel et al., 2011). For a fixed batch size B, the num-
ber of updates (and projections) is reduced from O(T )
to O(T/B), and the variance of the stochastic gradi-
ent is reduced from σ to σ/

√
B. By appropriately bal-

ancing between the loss cased by a smaller number of
updates and the reduction in the variance of stochas-
tic gradients, it is able to maintain the optimal rate of
convergence.

The idea of mini-batches can be incorporated into any
stochastic optimization algorithm that uses gradient-
based updating rules. When the objective function
is smooth and convex, combining mini-batches with
the accelerated stochastic approximation (Lan, 2012)
leads to

O

(

B2

T 2
+

1√
T

)

rate of convergence (Cotter et al., 2011). By setting
B = T 3/4, we achieve the optimal O(1/

√
T ) rate with

only O(T 1/4) projections. When the target function
is smooth and strongly convex, we can apply mini-
batches to the optimal algorithms for strongly con-
vex functions (Hu et al., 2009; Ghadimi & Lan, 2012),
leading to

O

(

B2

T 2
+

1

T

)

rate of convergence (Dekel et al., 2012). In order to
maintain the optimal O(1/T ) rate, the value of B can-
not be larger than

√
T , implying at least O(

√
T ) pro-

jections are required. In contrast, the algorithm pro-
posed in this paper achieves an O(1/T ) rate with only
O(log T ) projections.

2.2. Projection free algorithms

Due to the low iteration cost, Frank-Wolfe algo-
rithm (Frank & Wolfe, 1956) or conditional gradient
method (Levitin & Polyak, 1966) has seen a recent
surge of interest in machine learning (Hazan, 2008;
Clarkson, 2010; Lacoste-Julien et al., 2013). At each
iteration of the Frank-Wolfe algorithm, instead of
performing a projection that requires solving a con-
strained quadratic programming problem, it solves a
constrained linear programming problem. For many
domains of interest, including the positive semidefi-
nite cone and the trace norm ball, the constrained
linear problem can be solved more efficiently than a
projection problem (Jaggi, 2013), making this kind of
methods attractive for large-scale optimization.

In a recent work (Hazan & Kale, 2012), an online vari-
ant of the Frank-Wolfe algorithm is proposed. Al-
though the online Frank-Wolfe algorithm exhibits an
O(1/

√
T ) convergence rate for smooth functions, it is
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unable to achieve the optimal O(1/T ) rate for strongly
convex functions. Besides, the memory complexity of
this algorithm is O(T ), making it unsuitable for large-
scale optimization problems. Another related work is
the stochastic gradient descent with only one projec-
tion (Mahdavi et al., 2012). This algorithm is built
upon the assumption that the solution domain can be
characterized by an inequality constraint g(w) ≤ 0 and
the gradient of g(·) can be evaluated efficiently. Unfor-
tunately, this assumption does not hold for some com-
monly used domain (e.g., the trace norm ball). Com-
pared to the projection free algorithms, our proposed
method is more general because it make no assumption
about the solution domain.

3. Stochastic Optimization of Smooth

and Strongly Convex Functions

3.1. Preliminaries

We first define smoothness and strongly convexity.

Definition 1. A function f : D → R is L-smooth
w.r.t. a norm ‖ ·‖ if f is everywhere differentiable and

‖∇f(w)−∇f(w′)‖∗ ≤ L‖w −w′‖, ∀w,w′ ∈ D.

where ‖ · ‖∗ is the dual norm.

Definition 2. A smooth function f : D → R is λ-
strongly convex w.r.t. a norm ‖ · ‖, if f is everywhere
differentiable and

‖∇f(w)−∇f(w′)‖∗ ≥ λ‖w −w′‖, ∀w,w′ ∈ D.

To simplify our analysis, we assume that both ‖·‖ and
‖·‖∗ are the vector ℓ2 norm in the following discussion.

Following (Hazan & Kale, 2011), we make the follow-
ing assumptions about the gradient oracle.

• There is a gradient oracle, which, for a given input
point w returns a stochastic gradient ĝ(w) whose
expectation is the gradient of F (w) at w, i.e.,

E[ĝ(w)] = ∇F (w).

We further assume the stochastic gradients ob-
tained by calling the oracle are independent.

• The gradient oracle is G-bounded, i.e.,

‖ĝ(w)‖ ≤ G, ∀w ∈ D.

We note that this assumption may be relaxed
by assuming the orlicz norm of ĝ(w) to be
bounded (Lan, 2012), i.e., E[exp(‖ĝ(w)‖2/G2)] ≤
exp(1). Although our theoretical result holds even
under the assumption of bounded orlicz norm, we
choose the G-bounded gradient for simplicity.

Define w∗ as the optimal solution that minimizes
F (w), i.e., w∗ = argmin

w∈D F (w). Using the strongly
convexity of F (w), we have (Hazan & Kale, 2011)

λ

2
‖w −w∗‖2 ≤ F (w)− F (w∗) ≤

2G2

λ
, ∀ w ∈ D. (1)

3.2. The Algorithm

Algorithm 1 shows the proposed method for Stochas-
tic Optimization of Smooth and Strongly Convex func-
tions (SOS2C), that achieves the optimal O(1/T ) rate
of convergence by performing O(log T ) projections.
The inputs of the algorithm are: (1) η, the step size,
(2) M , the fixed number of updates per epoch/stage,
(3) B1, the initial batch size, and (4) T , the total num-
ber of calls to the gradient oracle. With a slight abuse
of notation, we use ĝ(w, i) to denote the stochastic
gradient at w obtained after making the i-th call to
the oracle. We denote the projection of w onto the
domain D by ΠD(w).

Similar to the epoch gradient descent algo-
rithm (Hazan & Kale, 2011), the proposed algorithm
consists of two layers of loops. It uses the outer
(while) loop to divide the learning process into a
sequence of epochs (Step 5 to Step 12). Similar
to (Hazan & Kale, 2011), the number of calls to
the gradient oracle made by Algorithm 1 increases
exponentially over the epoches, a key that allows us
to achieve the optimal O(1/T ) convergence rate for
strongly convex functions. We note that other tech-
niques, such as the α-suffix averaging (Rakhlin et al.,
2012), can also be used as an alternative.

In the inner (for) loop of each epoch, we combine the
idea of mini-batches (Dekel et al., 2011) with extra-
gradient descent (Nemirovski, 2005; Juditsky et al.,
2011). We choose extra-gradient descent because it al-
lows us to replace in the excess risk bound E[‖ĝ(w)‖2]
with E[‖ĝ(w)−E[ĝ(w)]‖2], the variance of the stochas-
tic gradient ĝ(w), thus opening the door to fully ex-
ploring the capacity of mini-batches in variance reduc-
tion.

To be more specific, in the k-th epoch, we maintain two
sequences of solutions {wk

t }Mt=1 and {zkt }Mt=1, where z
k
t

is an auxiliary solution that allows us to effectively
explore the smoothness of the loss function. At each
iteration t of the k-th epoch, we calculate the aver-
age gradients ḡk

t and f̄kt by calling the gradient oracle
Bk times (Steps 6 and 8), and update the solutions
wk

t and zkt using the average gradients (Steps 7 and
9). The batch size Bk is fixed inside each epoch but
doubles from epoch to epoch (Step 11). This is in
contrast to most mini-batches based algorithms that
have a fixed batch size. This difference is critical for
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Algorithm 1 log T Projections for SOS2C

1: Input: parameters η, M , B1 and T
2: Initialize w1

1 ∈ D arbitrarily
3: Set k = 1
4: while 2M

∑k
i=1 B

i ≤ T do

5: for t = 1 to M do

6: Compute the average gradient at wk
t over Bk

calls to the gradient oracle

ḡk
t =

1

Bk

Bk

∑

i=1

ĝ(wk
t , i)

7: Update
zkt = ΠD

(

wk
t − ηḡk

t

)

8: Compute the average gradient at zkt over Bk

calls to the gradient oracle

f̄kt =
1

Bk

Bk

∑

i=1

ĝ(zkt , i)

9: Update

wk
t+1 = ΠD

(

wk
t − ηf̄kt

)

10: end for

11: wk+1
1 = 1

M

∑M
t=1 z

k
t , and Bk+1 = 2Bk

12: k = k + 1
13: end while

14: Return: wk
1

achieving O(1/T ) convergence rate with only O(log T )
updates.

Finally, it is worth mentioning that the Euclidean
projection in Steps 7 and 9 can be replaced by the
more general “prox-mapping” defined by a Bregman
distance function to better capture the geometry of
D (Nemirovski, 2005).

3.3. The main results

The following theorem bounds the expected excess risk
of the solution return by Algorithm 1 and the number
of projections.

Theorem 1. Set the parameters in Algorithm 1 as

η =
1√
6L

, M =
4

ηλ
and B1 = 12ηλ.

The final point wk
1 returned by Algorithm 1 makes at

most T calls to the gradient oracle, and has its excess

risk bounded by

E[F (wk
1)− F (w∗)] ≤

384G2

λT
= O

(

1

T

)

,

and the total number of projections bounded by

8
√
6L

λ

⌊

log2

(

T

96
+ 1

)⌋

= O (log T ) .

Theorem 1 shows that in expectation, Algorithm 1
achieve an O(1/T ) convergence with O(log T ) updates.
The following theorem gives a high probability bound
of the excess risk for Algorithm 1.

Theorem 2. Set the parameters in Algorithm 1 as

η =
1√
6L

, M =
4

ηλ
and B1 = αηλ,

where α is defined below. For any 0 < δ < 1, let

δ̃ =
δ

k†
,

k† =

⌊

log2

(

T

8α
+ 1

)⌋

= O(log T ), (2)

α =max

{

400 log2
8M

δ̃
,

1 + 64 log2
8M

δ̃

(

log
4N

δ̃
+

4

9
log2

4N

δ̃

)}

(3)

=O

[

(

log log T + log
1

δ

)4
]

,

N =

⌈

log2
4MT

ηλ

⌉

= O(log T ). (4)

The final point wk
1 returned by Algorithm 1 makes at

most T calls to the gradient oracles, performs

8
√
6L

λ

⌊

log2

(

T

8α
+ 1

)⌋

= O (log T )

projections, and with a probability at least 1 − δ, has
its excess risk bounded by

F (wk
1)−F (w∗) ≤

32αG2

λT
= O

(

(log log T + log 1/δ)4

T

)

.

Remark: It is worth noting that we achieve the
high probability bound without making any mod-
ifications to Algorithm 1. This is in contrast to
the epoch gradient descent algorithm (Hazan & Kale,
2011) that needs to shrink the domain size in or-
der to obtain the desirable high probability bound,
which could potentially lead to an additional compu-
tational cost in performing projection. We remove the
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shrinking step by effectively exploring the peeling tech-
nique (Bartlett et al., 2005).

The number of projections required by Algorithm 1,
according to Theorem 2, exhibits a linear dependence
on the conditional number L/λ, which can be very
large when dealing with ill-conditioned optimization
problems. In the deterministic setting, the conver-
gence rate only depends on the square root of the
conditional number (Nesterov, 2004; 2007). Thus, we
conjecture that it may be possible to improve the de-
pendence on the conditional number to its square root
in the stochastic setting, a problem that will be exam-
ined in the future.

4. Analysis

We here present the proofs of main theorems. The
omitted proofs are provided in the supplementary ma-
terial.

4.1. Proof of Theorem 1

Since we make use of the the multi-stage learning strat-
egy, the proof provided below is similar to the proof
in (Hazan & Kale, 2011). We begin by analyzing the
property of the inner loop in Algorithm 1, which is
a combination of mini-batches and the extra-gradient
descent. To this end, we have the following lemma.

Lemma 1. Let η = 1/[
√
6L] in Algorithm 1. Then,

we have

F

(

1

M

M
∑

t=1

zkt

)

− F (w∗) ≤
‖wk

1 −w∗‖2
2Mη

+
3η

M

(

M
∑

t=1

‖ḡk
t − gk

t ‖2 +
M
∑

t=1

‖f̄kt − fkt ‖2
)

(5)

+
1

M

M
∑

t=1

〈fkt − f̄kt , z
k
t −w∗〉 (6)

− λ

2M

M
∑

t=1

‖zkt −w∗‖2,

where

gk
t = ∇F (wk

t ) and fkt = ∇F (zkt ).

Taking the conditional expectation of the inequality, we
have

Ek−1

[

F

(

1

M

M
∑

t=1

zkt

)]

−F (w∗) ≤
‖wk

1 −w∗‖2
2Mη

+
6ηG2

Bk
.

where Ek−1[·] denotes the expectation conditioned on
all the randomness up to epoch k − 1.

The quantity in (5) illustrates the advantage of the
extra-gradient descent, i.e., it is able to produce
variance-dependent upper bound when applied to
stochastic optimization. Because of mini-batches, the
expectations of ‖ḡk

t − gk
t ‖2 and ‖f̄kt − fkt ‖2 are smaller

than G2/Bk, which leads to the tight upper bound in
the second inequality.

Based on Lemma 1, we get the following lemma that
bounds the expected excess risk in each epoch.

Lemma 2. Define

∆k = F (wk
1)− F (w∗).

Set the parameters η = 1/[
√
6L], M = 4/[ηλ] and

B1 = 12ηλ in Algorithm 1. For any k, we have

E[∆k] ≤ Vk =
G2

λ2k−2
.

Proof. It is straightforward to check that

Bk = 12ηλ2k−1 =
24ηG2

Vk
. (7)

We prove this lemma by induction on k. When k = 1,
we know that

∆1 = F (w1
1)− F (w∗)

(1)

≤ 2G2

λ
=

G2

λ21−2
= V1.

Assume that E[∆k] ≤ Vk for some k ≥ 1, and we prove
the inequality for k + 1. From Lemma 1, we have

Ek−1

[

F
(

wk+1
1

)]

− F (w∗) ≤
‖wk

1 −w∗‖2
2Mη

+
6ηG2

Bk
.

Thus

E
[

F
(

wk+1
1

)]

− F (w∗)

≤ E[‖wk
1 −w∗‖2]
2Mη

+
6ηG2

Bk

(1)

≤ E[2(F (wk
1)− F (w∗))/λ]

2Mη
+

6ηG2

Bk

(7)
=

E[∆k]

Mηλ
+

Vk

4
≤ Vk

4
+

Vk

4
= Vk+1.

We are now at the position to prove Theorem 1.

Proof of Theorem 1. From the stopping criterion of
the outer loop in Algorithm 1, we know that the num-
ber of the epochs is given by the largest value of k such
that

2M

k
∑

i=1

Bi ≤ T.
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Since

2M

k
∑

i=1

Bi = 24Mηλ

k
∑

i=1

2i−1 = 96(2k − 1),

the final epoch is given by

k† =

⌊

log2

(

T

96
+ 1

)⌋

,

and the final output is wk†+1
1 . From Lemma 2, we

have

E[F (wk†+1
1 )]− F (w∗) ≤ Vk†+1 =

G2

2k†−1λ
≤ 384G2

λT
,

where we use the fact

2k
† ≥ 1

2

(

T

96
+ 1

)

≥ T

192
.

The total number of projections is

2Mk† =
8
√
6L

λ

⌊

log2

(

T

96
+ 1

)⌋

.

4.2. Proof of Theorem 2

Compared to the proof of Theorem 1, the main differ-
ence here is that we need a high probability version of
Lemma 1. Specifically, we need to provide high prob-
ability bounds for the quantities in (5) and (6).

To bound the variances given in (5), we need the fol-
lowing norm concentration inequality in Hilbert Space
(Smale & Zhou, 2009).

Lemma 3. Let H be a Hilbert Space and let ξ be a
random variable on (Z, ρ) with values in H. Assume
‖ξ‖ ≤ B < ∞ almost surely. Let {ξi}mi=1 be indepen-
dent random draws of ρ. For any 0 < δ < 1, with a
probability at least 1− δ,

∥

∥

∥

∥

∥

1

m

m
∑

i=1

(ξi − E[ξi])

∥

∥

∥

∥

∥

≤ 4B√
m

log
2

δ
.

Based on Lemma 3, it is straightforward to prove the
following lemma.

Lemma 4. With a probability at least 1− δ̃/2, we have

‖ḡk
t − gk

t ‖ ≤ 4G√
Bk

log
4M

δ̃
, ∀ t = 1, . . . ,M. (8)

Similarly, with a probability at least 1− δ̃/4, we have

‖f̄kt − fkt ‖ ≤ 4G√
Bk

log
8M

δ̃
, ∀ t = 1, . . . ,M. (9)

We define the Martingale difference sequence:

Zk
t = 〈fkt − f̄kt , z

k
t −w∗〉.

In order to bound the summation of Zk
t in (6), we

make use of the Bernstein’s inequality for martin-
gales (Cesa-Bianchi & Lugosi, 2006) and the peeling
technique described in (Bartlett et al., 2005), leading
to the following Lemma.

Lemma 5. We use E1 to denote the event that all the
inequalities in (9) hold. On event E1, with a probabil-
ity at least 1− δ̃/4, we have

M
∑

t=1

Zk
t ≤ 4G2ηM

Bk
log2

8M

δ̃

+
G2

λBk

[

1 + 64 log2
8M

δ̃

(

log
4n

δ̃
+

4

9
log2

4n

δ̃

)]

+
λ

2

M
∑

t=1

‖zkt −w∗‖2,

where

n =

⌈

log2
4MBk

ηλ

⌉

. (10)

Substituting the results in Lemmas 4 and 5 into
Lemma 1, we obtain the lemma below.

Lemma 6. For any 0 < δ̃ < 1, with a probability at
least 1− δ̃, we have

F

(

1

M

M
∑

t=1

zkt

)

− F (w∗) ≤
‖wk

1 −w∗‖2
2Mη

+
100G2η

Bk
log2

8M

δ̃

+
G2

λBkM

[

1 + 64 log2
8M

δ̃

(

log
4n

δ̃
+

4

9
log2

4n

δ̃

)]

,

where n is given in (10).

Based on Lemma 6, we provide a high probability ver-
sion of Lemma 2, that bounds the excess risk in each
epoch with a high probability.

Lemma 7. Set the parameters η = 1/[
√
6L], M =

4/[ηλ] and B1 = αηλ in Algorithm 1, where α is de-
fined in (3). For any k, with a probability at least
(1− δ̃)k−1, we have

∆k = F (wk
1)− F (w∗) ≤ Vk =

G2

λ2k−2
.

Now, we provide the proof of Theorem 2.
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Proof of Theorem 2. The number of epochs made
is given by the largest value of k satisfying
2M

∑k
i=1 B

i ≤ T . Since

2M

k
∑

i=1

Bi = 2Mαλη

k
∑

i=1

2i−1 = 8α(2k − 1),

k† defined in (2) is the value of the final epoch, and

the final output is wk†+1
1 . From Lemma 7, we have

with a probability at least (1− δ̃)k
†

F (wk†+1
1 )− F (w∗) = ∆k†+1

≤Vk†+1 =
G2

2k†−1λ
=

2G2

2k†λ
≤ 32αG2

λT
,

where we use the fact

2k
† ≥ 1

2

(

T

8α
+ 1

)

≥ T

16α
.

We complete the proof by using the property that
(1 − 1

x )
x is an increasing function when x > 1, which

implies

(1− δ̃)k
†

=

(

1− δ

k†

)k†

=

(

(

1− 1

k†/δ

)k†/δ
)δ

≥
(

(

1− 1

1/δ

)1/δ
)δ

= 1− δ.

5. Experiments

In this section, we present numerical experiments to
support our theoretical analysis. We studied the fol-
lowing algorithms:

1. log T : the proposed algorithm that is optimal for
SOS2C but only needs log(T ) projections;

2. EP GD: the epoch gradient descent developed
in (Hazan & Kale, 2011), which is also optimal
for SOS2C but needs O(T ) projections;

3. SGD: the stochastic gradient descent with step
size ηt = 1/(λt) (Shalev-Shwartz et al., 2011),
which achieves O(log T/T ) rate of convergence for
general SOS2C and needs O(T ) projections.

We first consider the a simple stochastic optimization
problem adapted from (Rakhlin et al., 2012), which is
both smooth and strongly convex. The objective func-
tion is F (W ) = 1

2‖W‖2F and the domain is the 5 × 5
dimensional positive semidefinite (PSD) cone. The
stochastic gradient oracle, given a pointW , returns the
stochastic gradient W + Z where Z is uniformly dis-
tributed in [−1, 1]5×5. Because of the noise matrix Z,

all the immediate solutions are not PDS and we need
to project them back to the PSD cone. To ensure the
eigendecomposition only involving real numbers, we
further require Z to be symmetric. Notice that for this
problem we know W∗ = argminW�o F (W ) = 05×5.
Since the gradient of W∗ is 05×5, it can be shown that
SGD also achieves the optimal O(1/T ) rate of conver-
gence on this problem (Rakhlin et al., 2012).

Let WT be the solution returned after making T calls
to the gradient oracle. To verify if the proposed al-
gorithm achieves an O(1/T ) convergence, we measure
(F (WT ) − F (W∗)) × T versus T , which is given in
Fig. 1(a). We observe that when T is sufficiently large,
quantity (F (WT ) − F (W∗)) × T essentially becomes
a constant for all three algorithms, implying O(1/T )
convergence rates for all the algorithms. We also ob-
serve that the constant achieved by the proposed al-
gorithm is slightly larger than the two competitors,
which can be attributed to the term (log log T )4 in our
bound in Theorem 2. To demonstrate the advantage of
our algorithm, we plot the value of the objective func-
tion versus the number of projections P in Fig. 1(b).
We observe that using our algorithm, the objective
function is reduced significantly faster than other al-
gorithms w.r.t. the number of projections.

In the second experiment, we apply our algorithm
to the regularized distance metric learning (Jin et al.,
2009). The goal is to solve the following problem

min
W�0

E(xi,yi),(xj ,yj)[ℓ(yij(1− ‖xi − xj‖2M ))] +
λ

2
‖W‖2F ,

where xi is the instance, and yi is xi’s label, yij is
derived from labels yi and yj (i.e., yij = 1 if yi =
yj and −1 otherwise), ‖x‖2M = x⊤Mx, and ℓ(z) =
log(1 + exp(−z)) is the logit loss. We set λ = 0.1 and
test our algorithm on the Mushrooms and Adult data
sets (Chang & Lin, 2011).

During the optimization process, the call to the gra-
dient oracle corresponds to generate a training pair
{(xi, yi), (xj , yj)} randomly. When the oracle gives
us two training examples belonging to the same class
(i.e., a must-link constraint), the stochastic gradient is
a PSD matrix, which could result in non-PSD inter-
mediate solutions and makes the projection step nec-
essary. To estimate the value of objective function,
we evaluate the average empirical loss on 104 testing
pairs, which are also generated randomly. Fig. 2 shows
the value of the objective function versus the number
of projections P . Again, this result validates that the
proposed algorithm log T is able to reduce the num-
ber of projections dramatically without hurting the
performance. More results can be found in the supple-
mentary material.
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Figure 1. Results for stochastic optimization of F (W ) = 1

2
‖W‖2F over the PSD cone. The experiments are repeated 10

times and the averages are reported.
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Figure 2. Results for the regularized distance metric learning on the Mushrooms and Adult data sets. F (WT ) is measured
on 104 testing pairs and the horizontal axis P measures the number of projections performed by each algorithm. The
experiments are repeated 10 times and the averages are reported.

6. Conclusion

In this paper, we study the problem of reducing the
number of projections in stochastic optimization by ex-
ploring the property of smoothness. When the target
function is smooth and strongly convex, we propose
a novel algorithm that achieves the optimal O(1/T )
rate of convergence by only performing O(log T ) pro-
jections.

An open question is how to extend our results
to stochastic composite optimization (Lan, 2012),
where the objective function is a combination of
non-smooth and smooth stochastic components. We
plan to explore the composite gradient mapping tech-

nique (Nesterov, 2007), to see if we can achieve an
O(1/T ) rate of convergence with only O(log T ) up-
dates.
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