
Online Kernel Learning with a Near Optimal Sparsity Bound

Lijun Zhang zhanglij@msu.edu
Jinfeng Yi yijinfen@msu.edu
Rong Jin rongjin@cse.msu.edu

Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA

Ming Lin lin-m08@mails.tsinghua.edu.cn

Department of Automation, Tsinghua University, Beijing 100084, China

Xiaofei He xiaofeihe@cad.zju.edu.cn

State Key Laboratory of CAD&CG, College of Computer Science, Zhejiang University, Hangzhou 310027, China

Abstract

In this work, we focus on Online Sparse Ker-

nel Learning that aims to online learn a ker-
nel classifier with a bounded number of sup-
port vectors. Although many online learn-
ing algorithms have been proposed to learn
a sparse kernel classifier, most of them fail
to bound the number of support vectors used
by the final solution which is the average of
the intermediate kernel classifiers generated
by online algorithms. The key idea of the pro-
posed algorithm is to measure the difficulty
in correctly classifying a training example by
the derivative of a smooth loss function, and
give a more chance to a difficult example to
be a support vector than an easy one via a
sampling scheme. Our analysis shows that
when the loss function is smooth, the pro-
posed algorithm yields similar performance
guarantee as the standard online learning al-
gorithm but with a near optimal number of
support vectors (up to a poly(lnT) factor).
Our empirical study shows promising perfor-
mance of the proposed algorithm compared
to the state-of-the-art algorithms for online
sparse kernel learning.

1. Introduction

Kernel methods (Schölkopf & Smola, 2002), such
as support vector machine (SVM) (Burges, 1998)

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

and kernel logistic regression(KLR) (Roth, 2001),
are widely used in statistical learning. Many on-
line learning algorithms have been proposed to im-
prove the computational efficiency of kernel meth-
ods (Freund & Schapire, 1999; Kivinen et al., 2002;
Cheng et al., 2007). Typically, online kernel learn-
ing receives training examples (xt, yt), t = 1, . . . , T in
sequel, and generates a sequence of kernel classifiers
{f1, . . . , fT } based on the observed examples. The fi-

nal solution f̂ is obtained by taking the average of
the intermediate classifiers, i.e., f̂ = 1

T

∑T

t=1
ft, a

procedure often referred to as online-to-batch conver-
sion (Cesa-Bianchi et al., 2004). The main problem
of online kernel learning is that the number of support
vectors used to construct the intermediate ft may grow
unboundedly, leading to a large storage requirement
and a high computational cost for both training and
testing.

The focus of this work is online sparse kernel learning
that learns a kernel classifier with a limited number of
support vectors. To generate sparse kernel classifiers, a
common approach is to use a non-smooth loss function
(e.g. hinge loss) whose derivative becomes zero when a
data point is classified correctly with sufficiently large
margin (Kivinen et al., 2002). The drawback of this
approach is that it is unable to provide a formal bound
on the number of support vectors.

An alternative approach for online sparse kernel learn-
ing is based on sampling (Zhang et al., 2012). It online
determines if a training example (xt, yt) is a support
vector based on p(yt|ft(xt)), the probability of cor-
rectly classifying (xt, yt). The larger the probability
p(yt|ft(xt), the less likely (xt, yt) will be used as a
support vector. Similar to the approach of using non-
smooth loss function, this method is not equipped with

Online Kernel Learning with a Near Optimal Sparsity Bound

a formal bound on the number of support vectors.

Budget online learning methods (Cavallanti et al.,
2007; Dekel et al., 2008) were proposed to control the
number of support vectors. It maintains through the
iterations, a sequence of kernel classifiers with a fixed
number of support vectors. The main shortcoming of
budget online learning is that although the number of
support vectors is bounded for each intermediate clas-
sifier ft, it is usually not the case for the final solution,
which is computed as the average of the intermediate
classifiers. This is verified by our empirical study.

In this paper, we develop an online sparse kernel learn-
ing algorithm by utilizing a sampling approach and a
smooth loss function ℓ(y, z). We note that we slightly
abuse the term “smooth” as the smooth loss func-
tion defined in this work is slightly different from
the conventional definition. The key idea of the pro-
posed algorithm is to measure the difficulty in clas-
sifying a training example (xt, yt) by the derivative
ℓ′(yt, ft(xt)), instead of the loss ℓ(yt, ft(xt)), and give
more chance for a “difficult” example to be a support
vector than an “easy” one via a sampling procedure.
We choose the derivative for the difficulty measure-
ment because it leads to an unbiased estimate of the
gradient, an important property for our analysis.

Using a smooth loss function may sound counter-
intuitive because it usually leads to dense kernel clas-
sifiers. One nice property of a smooth loss function
is that its derivative directly reflects the degree of
misclassification. As a result, given kernel classifier
f(·) learned from a smooth loss, if we randomly se-
lect its support vector (xt, yt) based on the derivative
ℓ′(yt, f(xt)), most of the support vectors that are dif-
ficult to be classified by f(·) will be kept, which al-
lows us to preserve the core of f(·). More specifically,
our theoretical analysis reveals the following important
properties of the proposed algorithm compared to the
available methods for online kernel learning:

• Unlike the existing approaches for sparse online
kernel learning, we provide not only the regret
bound for the proposed algorithm but also the
bound for the number of support vectors. Our
analysis also shows that the bound for the num-
ber of support vectors achieved by the proposed
algorithm is tight up to a poly(lnT) factor.

• Unlike budget online learning that only bounds
the number of support vectors for intermediate so-
lutions, the proposed algorithm guarantees sparse
solutions for both the intermediate classifiers and
the final classifier.

• The proposed algorithm provides a flexible mech-

anism to control the number of support vectors
and allows users to make appropriate tradeoff be-
tween classifier sparsity and classification accu-
racy.

2. Related Work

In this section, we briefly review the existing work on
sparse learning.

Sparse Kernel Learning in Batch Setting

A number of algorithms have been developed for
batch sparse kernel learning (Burges & Schölkopf,
1997; Lee & Mangasarian, 2001; Zhu & Hastie, 2001;
Keerthi et al., 2006). In post-processing based ap-
proach (Cotter et al., 2013), a non-sparse kernel clas-
sifier is first learned from the training examples, and a
sparse solution is then computed to approximate the
dense solution. An alternative approach is to refor-
mulate the kernel learning problem such that a sparse
solution is guaranteed (Wu et al., 2006).

Online Sparse Kernel Learning Most online
sparse kernel learning algorithms are built upon non-
smooth loss functions, and none of them is able to pro-
vide explicit bound on the number of support vectors
for the final solution1. Finally, it is worthwhile noting
that our work is closely related to the recent work on
sparse kernel logistic regression (Zhang et al., 2012) in
that both adopt a sampling strategy for reducing the
number of support vectors, they differ significantly in
the sampling procedure. More importantly, the pro-
posed algorithm here achieves a bounded number of
support vectors while (Zhang et al., 2012) did not.

Online Kernel Learning on a Budget The ob-
jective of budget online kernel learning is to generate
a sequence of kernel classifiers with a fixed number of
support vectors. In (2002), Kivinen et al. consider on-
line kernel learning for regularized losses, where the
coefficients of support vectors are shrunk by a small
constant at each iteration. To improve the sparsity,
they propose to drop the support vectors with small-
est coefficients. Forgetron (Dekel et al., 2008) applies
a similar idea and turns kernel perceptron into a bud-
get kernel learning algorithm. In randomized budget
perceptron (Cavallanti et al., 2007) and bounded on-
line gradient descent (Zhao et al., 2012), random sam-
pling approaches are developed to remove support vec-

1Although mistake bounds given in these studies are
closely related to the number of support vectors, they can
not be translated into the sparsity guarantee for the final
kernel classifier since binary loss function is used in the
mistake bound analysis.

Online Kernel Learning with a Near Optimal Sparsity Bound

tors when the number of support vectors exceeds the
budget.

In (2004), Crammer et al. develop a heuristic ap-
proach that removes redundant support vectors. A
similar but more sophisticated strategy is developed
in Projectron (Orabona et al., 2008), which introduces
a new support vector only when it cannot be well
approximated by the existing ones. Recently, Wang
et al. present budgeted stochastic gradient descent
for kernel SVM through several budget maintenance
strategies (Wang et al., 2012).

Since budget online learning typically uses both inser-
tion and deletion operations to control the number of
support vectors, the final solution, i.e., the average of
intermediate classifiers, is usually dense in the number
of support vectors. In contrast, our algorithm only
allows insertion operation, leading to a sparse kernel
classifier even for the final solution.

Online Learning for Sparse Linear Models Sev-
eral online methods have been proposed to learn sparse
linear models (Langford et al., 2009; Duchi & Singer,
2009). These approaches cannot be applied directly to
kernel learning because they rely on the ℓ1 regulariza-
tion and are developed specifically for linear classifica-
tion.

3. Online Sparse Kernel Learning by
Sampling and Smooth Losses
(OSKL)

Before we describe our algorithm, we first define a few
notations that will be used throughout the paper.

Let κ(x,x′) : X × X 7→ R be a kernel function, and
Hκ be the reproducing kernel Hilbert space (RKHS)
endowed with κ. For simplicity, we assume κ(x,x) ≤ 1
for any x ∈ X . Let B = {f ∈ Hκ : ‖f‖Hκ

≤ R} be the
solution domain, where R > 0 specifies the domain
size. We use πB(f) for the projection of a function
f(·) ∈ Hκ into the domain B, and sgn(x) for the sign
function that outputs +1, 0, and−1 when x is positive,
zero, and negative, respectively.

Let ℓ(y, z) be a non-negative loss function convex in
the second argument. Similar to most online learning
algorithms, we assume ℓ(y, z) to be Lipschitz continu-
ous in the second argument, i.e.,

A1 |ℓ′(y, z)| ≤ G1, ∀z ∈ Z,

where Z is the domain for the predicted value2. Be-

2We denote the partial derivative of ℓ(y, z) w.r.t. its
second argument by ℓ′(y, z), i.e., ℓ′(y, z) = ∂ℓ(y, z)/∂z.

Table 1. Loss function satisfying condition A2

Name Definition of ℓ(y, z) L

Logit loss ln(1 + exp(−yz)), y ∈ {±1} 1
Exponential loss exp(−yz), |y| ≤ d d

Square loss (y − z)2, |y − z| ≥ δ > 0 2

δ

sides being Lipschitz continuous, we also assume that
the magnitude of the derivative is upper bounded by
the loss, i.e.,

A2 |ℓ′(y, z)| ≤ Lℓ(y, z), ∀z ∈ Z,

where L > 0 is a constant independent from y and z.

Remark 1 It is the assumption A2 that makes it
possible to bound both the regret and the sparsity of
the kernel classifier simultaneously. It is straightfor-
ward to check that assumption A2 holds for logit loss
ℓ(y, z) = ln(1 + exp(−yz)) because

|ℓ′(y, z)| = 1− 1

1 + exp(−yz)

≤− ln
1

1 + exp(−yz)
= ℓ(y, z).

Table 1 shows a few examples of loss functions that
satisfy condition A2. We note that condition A2 is
closely related to the conventional definition of H-
smooth loss function. This is because, using Lemma
2.1 from (Srebro et al., 2010), it is easy to show that
for any H-smooth loss function ℓ(y, z), if the absolute
value of the derivative |ℓ′(y, z)| is bounded from below
by a constant G0 for domain Z, it will satisfy assump-
tion A2 with L = 4H/G0. Algorithm 1 shows the
detailed steps of the proposed Online Sparse Kernel
Learning (OSKL) algorithm. At each iteration, it first
computes the derivative ℓ′(yt, ft(xt)) and then samples
a binary variable Zt with

Pr(Zt = 1) =
1

G
|ℓ′(yt, ft(xt))|,

where parameter G is introduced to adjust the sam-
pling probability. Training example (xt, yt) is added
to the kernel classifier as a support vector only when
Zt = 1. It is this sampling scheme that allows us to
control the number of support vectors.

Note that we choose the derivative |ℓ′(yt, ft(xt))|, in-
stead of the loss ℓ(yt, ft(xt)), as the basis for sampling.
This is because using the derivative based sampling,
the resulting gradient g(·) computed in (1) will be an

Online Kernel Learning with a Near Optimal Sparsity Bound

Algorithm 1 Online Sparse Kernel Learning (OSKL)

Input: step size η, domain size R, and parameter
G ≥ G1

1: Initialize f1(x) = 0
2: for t = 1, . . . , T do

3: Receive an example (xt, yt)
4: Compute the derivative ℓ′(yt, ft(xt))
5: Sample a binary random variable Zt with

Pr(Zt = 1) =
1

G
|ℓ′(yt, ft(xt))|

6: Update the classifier by

ft+1(·) = πB [ft(·)− ηgt(·)]

where

gt(·) = sgn(ℓ′(yt, ft(xt)))ZtGκ(xt, ·) (1)

7: end for

Output f̂(·) = 1

T

∑T

t=1
ft(·)

unbiased estimate of the true gradient ∇ℓ(yt, ft(xt)),
i.e.,

E [g(·)] = ∇ℓ(yt, ft(xt)) = ℓ′(yt, ft(xt))κ(xt, ·).

This property is the key to the analysis of the re-
gret bound and the sparsity for the proposed algo-
rithm. In addition, since |ℓ′(yt, ft(xt))| is assumed
to be bounded by ℓ(yt, ft(xt) in condition A2, using
derivative for sampling may result in a smaller number
of support vectors.

Evidently, the number of support vectors of f̂ is given
by
∑T

t=1
Zt. The following theorem shows that both

the regret and the number of supported vectors can be
bounded by the cumulative loss of the optimal kernel
classifier.

Theorem 1. Assume that loss function ℓ(y, z) satis-

fies the assumptions A1, A2, and T ≥ 18/[G ln(1/δ)].
For a fixed γ ∈ (0, 1), we set η ≤ γ/(LG). Let

f1, . . . , fT be the sequence of classifiers generated by

by Algorithm 1. With probability at least 1 − 2δ, for

any f∗ ∈ B, we have

T
∑

t=1

ℓ(yt, ft(xt)) ≤
1

1− γ

T
∑

t=1

ℓ(yt, f∗(xt))

+
ηG2

(1− γ)
c+

R2

(1− γ)η
c+

RG

1− γ
c+Rc,

(2)

and
T
∑

t=1

Zt ≤
3L

2G

T
∑

t=1

ℓ(yt, ft(xt)) + c, (3)

where

c = max

{

2
√

G1,
1

2
+ 16 ln

m

δ
,
8

3
ln

m

δ
+

19

18
ln

1

δ

}

,

(4)
and m = ⌈log2(G1T

2)⌉.

Remark 2 Note that although in (3) we

bound the number of support vectors
∑T

t=1
Zt

by
∑T

t=1
ℓ(yt, ft(xt)), it is easy to relate the number

of support vectors to the loss of the optimal classifier
f∗ using the bound in (2). To better understand
the structure of the bounds in (2) and (3), we set
η = γ/(LG), leading to the following bounds for the
regret and the number of support vectors

T
∑

t=1

ℓ(yt, ft(xt))−
(

1

1− γ

T
∑

t=1

ℓ(yt, f∗(xt)) +Rc

)

≤G

(

γ

L(1− γ)
+

LR2

(1− γ)γ
+

R

1− γ

)

c,

and

T
∑

t=1

Zt −
(

1 +
3γ

2(1− γ)
+

3L2R2

2(1− γ)γ
+

3LR

2(1− γ)

)

c

≤ 1

G

(

3L

2(1− γ)

T
∑

t=1

ℓ(yt, f∗(xt)) +
3LR

2
c

)

.

It is not surprising to observe that the smaller the G,
the smaller the regret and the larger the number of
support vectors. Thus, parameter G allows us to com-
promise between classifier sparsity and classification
accuracy.

To check the tightness of the bounds for Algorithm 1,
we examine if it is always possible to devise an al-
gorithm that achieves a similar regret bound as Al-
gorithm 1 but with a significantly smaller number of
support vectors. The answer to this question, as re-
vealed by the following theorem, is no. We defer the
proof to the supplementary document.

Theorem 2. For any fixed integers n and T , there al-

ways exists a sequence of training examples {xt, yt}Tt=1

such that

• the optimal classifier f∗ has n support vectors and

O(n) loss,
• the sequence of kernel classifiers f1, . . . , fT re-

turned by Algorithm 1 achieves a regret bound of

O(n[lnT]2) with O(n[lnT]2) support vectors, and
• the regret of any sequence of kernel classifiers

f ′
1, . . . , f

′
T with less than n support vectors is at

least Ω(T/n).

Online Kernel Learning with a Near Optimal Sparsity Bound

The result in Theorem 2 indicates that the bound for
the number of support vectors achieved by Algorithm 1
is optimal up to a poly(lnT) factor.

4. Analysis

In this section, we present the analysis that leads to
Theorem 1. To simplify the notations, we define

τt = sgn(ℓ′(yt, ft(xt))), and AT =

T
∑

t=1

|ℓ′(yt, ft(xt))|.

In the analysis below, we consider two different sce-
narios, i.e., AT ≤ 1/T and AT > 1/T .

4.1. Bounds When AT ≤ 1/T

Under this condition, we have

T
∑

t=1

ℓ(yt, ft(xt))− ℓ(yt, f∗(xt))

≤
T
∑

t=1

ℓ′(yt, ft(xt))(ft(xt)− f∗(xt))

≤
T
∑

t=1

αℓ′(yt, ft(xt))
2 +

(ft(xt)− f∗(xt))
2

4α

≤α
G1

T
+

TR2

α
= 2R

√

G1,

(5)

where we set α = TR/
√
G1.

In addition, we can also bound the number of support
vectors, i.e.,

∑T

t=1
Zt, by using Bernstein’s inequality

for martingales (Cesa-Bianchi & Lugosi, 2006).

Lemma 1. Assume AT ≤ 1/T and T ≥
18/[G ln(1/δ)]. With probability at least 1−δ, we have

T
∑

t=1

GZt − |ℓ′(yt, ft(xt))| ≤ G ln
1

δ
.

The proof is provided in the supplementary document.

As a result, with probability at least 1− δ, we have

T
∑

t=1

Zt ≤
1

GT
+ ln

1

δ
≤ 19

18
ln

1

δ
. (6)

4.2. Bounds When AT > 1/T

We first consider bounding the number of support
vectors

∑T

t=1
Zt. Similar to the previous analy-

sis, we derive an upper bound for
∑T

t=1
GZt −

|ℓ′(yt, ft(xt))|. However, in this case, there is no

tight upper bound for AT , so we cannot follow
the approach used in the proof of Lemma 1. In-
stead, we combine the Bernstein’s inequality for
martingales (Cesa-Bianchi & Lugosi, 2006) with the
peeling process introduced in (Bartlett et al., 2005),
to give an upper bound involving the overall loss
∑T

t=1
ℓ(yt, ft(xt)). To this end, we have the follow-

ing lemma.

Lemma 2. Assume AT > 1/T . With probability at

least 1− δ, we have

T
∑

t=1

GZt − |ℓ′(yt, ft(xt))| ≤ 2

√

GAT ln
m

δ
+

2

3
G ln

m

δ
,

where m = ⌈log2(G1T
2)⌉.

The proof is provided in the supplementary document.

Following Lemma 2, with probability at least 1−δ, we
have

T
∑

t=1

Zt

≤ 1

G

(

AT + 2

√

GAT ln
m

δ
+

2

3
G ln

m

δ

)

≤ 1

G

(

AT +
1

2
AT + 2G ln

m

δ
+

2

3
G ln

m

δ

)

=
3L

2G

T
∑

t=1

ℓ(yt, ft(xt)) +
8

3
ln

m

δ
.

(7)

Now, we give the analysis of the regret bound.
Using the standard analysis of online learning
(Cesa-Bianchi & Lugosi, 2006), we have

ℓ(yt, ft(xt))− ℓ(yt, f∗(xt))

≤〈ℓ′(yt, ft(xt))κ(xt, ·), ft − f∗〉Hκ

=τtZtG〈κ(xt, ·), ft − f∗〉Hκ
+

(ℓ′(yt, ft(xt))− τtZtG)(ft(xt)− f∗(xt))

≤
‖ft − f∗‖2Hκ

− ‖ft+1 − f∗‖2Hκ

2η
+

ηG2

2
Zt+

τt (|ℓ′(yt, ft(xt))| −GZt) (ft(xt)− f∗(xt)) .

(8)

By adding the inequality in (8) over all the iterations,
we have

T
∑

t=1

ℓ(yt, ft(xt))− ℓ(yt, f∗(xt))

≤
‖f∗‖2Hκ

2η
+

ηG2

2

T
∑

t=1

Zt+

T
∑

t=1

(|ℓ′(yt, ft(xt))| −GZt)(τt[ft(xt)− f∗(xt)]).

(9)

Online Kernel Learning with a Near Optimal Sparsity Bound

Following (7), we can bound the second expression on
the R.H.S of the above inequality as

ηG2

2

T
∑

t=1

Zt

≤3

4
ηLG

T
∑

t=1

ℓ(yt, ft(xt)) +
4

3
ηG2 ln

m

δ

≤3

4
γ

T
∑

t=1

ℓ(yt, ft(xt)) +
4

3
ηG2 ln

m

δ
,

(10)

where the last inequality follows from the condition
γ ≥ ηLG. Similar to Lemma 2, we develop the follow-
ing Lemma to bound the last expression in (9).

Lemma 3. Assume AT > 1/T . With probability at

least 1− δ, we have

T
∑

t=1

(|ℓ′(yt, ft(xt))| −GZt)(τt[ft(xt)− f∗(xt)])

≤4R

√

GAT ln
m

δ
+

4

3
RG ln

m

δ
,

where m = ⌈log2(G1T
2)⌉.

We skip the proof since it is identical to that for
Lemma 2. From Lemma 3, we have

T
∑

t=1

(|ℓ′(yt, ft(xt))| −GZt)(τt[ft(xt)− f∗(xt)])

≤ γ

4L
AT +

4L

γ
4R2G ln

m

δ
+

4

3
RG ln

m

δ

≤1

4
γ

T
∑

t=1

ℓ(yt, ft(xt)) +
16

η
R2 ln

m

δ
+

4

3
RG ln

m

δ
.

(11)

Combining the bounds in (9), (10) and (11), we have,
with probability at least 1− 2δ,

T
∑

t=1

ℓ(yt, ft(xt))−
T
∑

t=1

ℓ(yt, f∗(xt))

≤ 1

2η

(

‖f∗‖2Hκ

+ 32R2 ln
m

δ

)

+ γ
T
∑

t=1

ℓ(yt, ft(xt))+

4

3
ηG2 ln

m

δ
+

4

3
RG ln

m

δ
,

which implies

T
∑

t=1

ℓ(yt, ft(xt))

≤ 1

1− γ

T
∑

t=1

ℓ(yt, f∗(xt)) +
4ηG2

3(1− γ)
ln

m

δ
+

R2

2(1− γ)η

(

1 + 32 ln
m

δ

)

+
4RG

3(1− γ)
ln

m

δ
.

(12)

Table 2. Data statistics

Data Sets # Training # Testing # Features

Magic 15,216 3,804 10
Adult 32,561 16,281 123

Covtype 464,809 116, 203 54

Using the definition of c in (4), we obtain (2) by com-
bining (5) and (12), and (3) by combining (6) and (7).

5. Experiment

In this section, we perform classification experiments
to demonstrate the advantage of the proposed method.
We use 3 benchmark data sets which are summa-
rized in Table 2. Magic is available at UCI Ma-
chine Learning Repository (Frank & Asuncion, 2010),
while the others are downloaded from LIBSVM data
sets (Chang & Lin, 2011). For Magic and Covtype,
we randomly select 80% data for training and repeat
the experiments 5 times with different training and
testing splits. For Adult, we use the training and
testing splits provided by the authors, and also re-
peat the experiments 5 times by processing the train-
ing data in different random permutations. For un-
normalized data sets, we linearly scale each feature
to the range [0, 1]. We choose the Gaussian ker-
nel κ(xi,xj) = exp(‖xi − xj‖2/(2σ2)), and set the
kernel width σ to the 20-th percentile of the pair-
wise distances (Mallapragada et al., 2009). We choose
the logit loss for our Online Sparse Kernel Learning
(OSKL) algorithm.

5.1. Comparison with online sparse kernel

learning

We first compare the proposed OSKL with three online
sparse kernel learning algorithms:

• Margin and Auxiliary, two online learning al-
gorithms designed for sparse kernel logistic regres-
sion (Zhang et al., 2012);

• Pegasos, an online learning method for kernel
SVM, which produce sparse classifiers by using
hinge loss (Shalev-Shwartz et al., 2007).

Besides, we also report the result of Baseline, which
applies stochastic gradient descent to solve kernel lo-
gistic regression. The regularization parameter λ in
Pegasos is searched in the range of {1e−10, . . . , 1e−1},
the parameter R in other four algorithms is searched

Online Kernel Learning with a Near Optimal Sparsity Bound

in {1, 1e1, . . . , 1e5}, the step size η in Baseline, Mar-
gin, and Auxiliary is searched in {1e−2, 1e−1, 1}, and
their values are determined by cross validation. The
parameters γ and η in OSKL are set to be 0.9 and
γ/G, respectively. In the experiments, we formally
defined sparsity as the ratio between the number of
non-support vectors and the number of received train-
ing examples (Zhang et al., 2012).

Table 3 shows the average as well as the standard devi-
ation of the classification accuracy, the sparsity (SP),
the number of support vectors (SVs), and the train-
ing time on each data set3. Compared to Baseline, all
the other fours algorithms are able to generate sparse
classifiers, that dramatically reduce the training time,
and at the same time still maintain high classification
accuracy. We can see the classifier generated by OSKL
achieves the highest sparsity among all the methods in
comparison. Based on the results of OSKL on different
data sets, we also observe that the easier the classifi-
cation task, the higher the sparsity. This is consistent
with our analysis, i.e., the number of support vectors is
bounded by the loss of the optimal classifier. Finally,
we observe that increasing the value of G improves the
sparsity measure, but at the cost of small reduction in
classification accuracy.

5.2. Comparison with budget online learning

In this section, we compare OSKL with For-
getron (Dekel et al., 2008), which is a classic bud-
get online learning algorithm, and bounded on-
line gradient descent using nonuniform sampling
(BOGD++) (Zhao et al., 2012), which has shown to
be superior to other budget online learning algorithms,
such as Projectron (Orabona et al., 2008). To make
the result comparable, we set the budget size to be
the number of support vectors used by OSKL.

In the first comparison, we evaluate the performance
of the last classifier fT generated by the two budget
online learning algorithms, and summarize the classi-
fication performance in Table 4. We omit the sparsity
and the number of support vector of fT from Table 4,
because they are the same as OSKL and can be found
from Table 3. Since the budget is set as the number of
support vectors used by OSKL, it is not surprising that
the training time of Forgetron and BOGD++ is overall
comparable to that of OSKL. However, the classifica-
tion accuracy of the last classifiers fT generated by the
budget online learning algorithms is significantly worse
than that of OSKL in most cases. Besides, the perfor-

3Due to the space limit, we didn’t report the standard
deviation of the number of support vectors, as it can be
inferred from that of the sparsity.

mance of the last classifier is unstable, as indicated by
the large standard deviation.

Second, we evaluate the performance of the average
classifier f̂ = 1

T

∑T

t=1
ft, a common approach that

converts online learning solutions into a batch learning
solution. Table 5 summarizes the classification accu-
racy, the sparsity and the number of support vectors
for the average classifier. The training time was omit-
ted from Table 5 as it is already listed in Table 4. We
observe that, using the average classifier, both For-
getron and BOGD++ achieve similar classification ac-
curacy as OSKL. Compared to the results in Table 4,
we observer that the performance of the average clas-
sifier is significantly more stable than the last classi-
fier generated by the budget online learning. However,
compared to the results in Table 3, the average clas-
sifier is significantly denser in the number of support
vectors than the solution returned by OSKL, making
it less efficient in testing. In general, the number of
support vectors increases as the budget size decreases.
That is because using a smaller budget size, the online
learning algorithm tends to make more mistakes.

6. Conclusion

In this paper, we developed an algorithm for online
sparse kernel learning. The key idea is to reduce the
number of support vectors by performing stochastic
updating. By setting the sampling probability to be
proportional to the derivative of a smooth loss func-
tion, we are able to show theoretically that the sparsity
bound achieved by the proposed algorithm is near op-
timal. Experimental results show that the proposed
algorithm is very effective in finding a both accurate
and sparse classifier, and thus reduces the computa-
tional cost dramatically.

In the future, we plan to combine the strength of the
proposed approach with methods for budget online
learning to further improve the sparsity of online ker-
nel learning.

Acknowledgments

This work is partially supported by Office of
Navy Research (ONR Award N00014-09-1-0663 and
N000141210431), National Basic Research Program of
China (973 Program) under Grant 2009CB320801, and
National Natural Science Foundation of China (Grant
No: 61125203).

Online Kernel Learning with a Near Optimal Sparsity Bound

Table 3. Classification results (mean ± std) on several benchmark data sets

Data set Metric Baseline Margin Auxiliary Pegasos
OSKL

G = 1 G = 2 G = 4 G = 10

Magic

AC (%) 85.8±0.4 85.7±0.5 85.7±0.3 84.0±0.7 85.5±0.5 85.0±0.8 84.0±0.5 82.3±0.3
SP (%) 0±0 41.4±0.4 59.8±0.6 70.2±0.2 77.4±0.2 88.0±0.3 93.7±0.2 97.3±0.1
SVs 15,216 8,923 6,113 4,537 3,443 1,821 962 414
Time (s) 11.8±0.0 9.7±0.3 7.0±0.2 5.8±0.1 4.4±0.0 2.8±0.0 2.0±0.0 1.3±0.0

Adult

AC (%) 85.3±0.0 85.2±0.1 85.2±0.0 84.4±0.2 85.2±0.1 85.0±0.1 84.8±0.1 84.1±0.2
SP (%) 0±0 42.2±0.3 63.7±0.2 68.4±0.1 78.8±0.1 89.2±0.2 94.5±0.1 97.6±0.1
SVs 32,561 18,824 11,824 10,291 6,897 3,525 1,801 773
Time (s) 597±14 371±1 239±3 201±7 138±1 64.8±0.9 25.4±1.2 7.1±0.2

Covtype

AC (%) 79.2±0.1 79.1±0.1 79.1±0.1 78.2±0.2 79.0±0.1 78.6±0.1 77.9±0.2 77.1±0.1
SP (%) 0±0 38.9±0.1 52.6±0.1 52.7±0.1 69.6±0.0 84.4±0.1 91.9±0.0 96.6±0.0
SVs 464,809 284,006 220,209 219,871 141,317 72,677 37,509 15,696

Time (m) 761±47 579±31 452±30 462±101 284±20 147±9 78.9±5.5 34.0±2.5

Table 4. Classification results (mean ± std) of two budget learning algorithms, where the last classifier is used.

Data set Metric Forgetron BOGD++

Magic

Budget 3,443 1,821 962 414 3,443 1,821 962 414
AC (%) 78.2±3.9 76.7±5.4 76.3±1.4 75.5±3.5 83.4±1.3 82.4±1.1 82.4±1.5 80.8±1.6
Time (s) 4.8±0.0 4.4±0.1 3.1±0.1 2.1±0.0 7.6±0.1 5.7±0.0 3.9±0.1 2.2±0.0

Adult

Budget 6,897 3,525 1,801 773 6,897 3,525 1,801 773
AC (%) 80.4±2.4 76.4±6.4 76.9±3.2 65.7±20.2 83.4±0.4 81.4±2.3 82.9±1 82.6±1.5
Time (s) 147±6 118±7 61.1±1.6 15.0±1.7 189±14 120±11 54.4±5.5 12.4±0.2

Covtype

Budget 141,317 72,677 37,509 15,696 141,317 72,677 37,509 15,696
AC (%) 70.8±2.0 64.8±5.6 67.4±5.7 62.6±6.6 74.5±1.9 74.1±4.0 71.5±3.0 73.3±2.0
Time (m) 327±42 277±21 172±18 80.8±3.4 465±35 325±30 188±34 76.1±7.6

Table 5. Classification results (mean ± std) of two budget learning algorithms, where the average classifier is used.

Data set Metric Forgetron BOGD++

Magic

AC (%) 85.1±0.6 84.0±0.4 82.9±0.5 81.5±0.7 85.9±0.5 85.3±0.5 84.7±0.5 83.4±0.3
SP (%) 76.0±0.2 74.6±0.3 72.9±0.2 70.3±0.2 68.6±0.2 68.1±0.2 66.3±0.3 63.3±0.4
SVs 3,653 3,864 4,129 4,515 4,779 4,857 5,135 5,584

Adult

AC (%) 85.2±0.1 84.8±0.1 84.2±0.1 83.4±0.1 85.2±0.1 85.2±0.1 85.0±0.1 84.7±0.1
SP (%) 78.1±0.2 77.0±0.2 75.6±0.2 73.4±0.2 70.0±0.1 70.1±0.2 69.4±0.2 67.6±0.1
SVs 7,138 7,485 7,943 8,661 9,754 9,731 9,957 10,556

Covtype

AC (%) 78.9±0.1 78.4±0.1 77.9±0.1 77.0±0.2 78.8±0.1 78.6±0.1 78.4±0.1 77.8±0.1
SP (%) 69.1±0.1 68.2±0.0 67.1±0.1 65.4±0.1 53.7±0.1 54.5±0.1 56.3±0.1 54.9±0.1
SVs 143,697 147,650 152,556 160,927 215,119 211,475 203,114 209,766

Online Kernel Learning with a Near Optimal Sparsity Bound

References

Bartlett, P.L., Bousquet, O., and Mendelson, S. Local
rademacher complexities. Ann. Stat., 33(4):1497–
1537, 2005.

Burges, C.J.C. A tutorial on support vector machines
for pattern recognition. Data Min. Knowl. Discov.,
2(2):121–167, 1998.

Burges, C.J.C. and Schölkopf, B. Improving the accu-
racy and speed of support vector learning machines.
In NIPS 9, pp. 375–381, 1997.

Cavallanti, G., Cesa-Bianchi, N., and Gentile, C.
Tracking the best hyperplane with a simple budget
perceptron. Mach. Learn., 69(2-3):143–167, 2007.

Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning,
and Games. Cambridge University Press, 2006.

Cesa-Bianchi, N., Conconi, A., and Gentile, C. On the
generalization ability of on-line learning algorithms.
IEEE Trans. Inf. Theory, 50(9):2050–2057, 2004.

Chang, C. and Lin, C. LIBSVM: A library for support
vector machines. ACM Trans. Intell. Syst. Technol.,
2(3):27:1–27:27, 2011.

Cheng, L., Vishwanathan, S.V.N., Schuurmans, D.,
Wang, S., and Caelli, T. Implicit online learning
with kernels. In NIPS 19, pp. 249–256, 2007.

Cotter, A., Shalev-Shwartz, S., and Srebro, N. Learn-
ing optimally sparse support vector machines. In
ICML, 2013.

Crammer, K., Kandola, J., and Singer, Y. Online clas-
sification on a budget. In NIPS 16, pp. 225–232,
2004.

Dekel, O., Shalev-Shwartz, S., and Singer, Y. The
forgetron: A kernel-based perceptron on a budget.
SIAM J. Comput., 37(5):1342–1372, 2008.

Duchi, J. and Singer, Y. Efficient online and batch
learning using forward backward splitting. J. Mach.

Learn. Res., 10:2899–2934, 2009.

Frank, A. and Asuncion, A. UCI machine learning
repository, 2010.

Freund, Y. and Schapire, R.E. Large margin classifica-
tion using the perceptron algorithm. Mach. Learn.,
37(3):277–296, 1999.

Keerthi, S.S., Chapelle, O., and DeCoste, D. Building
support vector machines with reduced classifier com-
plexity. J. Mach. Learn. Res., 7:1493–1515, 2006.

Kivinen, J., Smola, A.J., and Williamson, R.C. On-
line learning with kernels. In NIPS 14, pp. 785–792,
2002.

Langford, J., Li, L., and Zhang, T. Sparse online learn-
ing via truncated gradient. J. Mach. Learn. Res., 10:
777–801, 2009.

Lee, Y. and Mangasarian, O.L. Rsvm: Reduced sup-
port vector machines. In SDM, 2001.

Mallapragada, P.K., Jin, R., Jain, A.K., and Liu, Y.
Semiboost: Boosting for semi-supervised learning.
IEEE Trans. Pattern Anal. Mach. Intell., 31(11):
2000–2014, 2009.

Orabona, F., Keshet, J., and Caputo, B. The projec-
tron: a bounded kernel-based perceptron. In ICML,
pp. 720–727, 2008.

Roth, V. Probabilistic discriminative kernel classi-
fiers for multi-class problems. In Proceedings of

the 23rd DAGM-Symposium on Pattern Recogni-

tion, pp. 246–253, 2001.

Schölkopf, B. and Smola, A.J. Learning with kernels

: support vector machines, regularization, optimiza-

tion, and beyond. MIT Press, 2002.

Shalev-Shwartz, S., Singer, Y., and Srebro, N. Pega-
sos: primal estimated sub-gradient solver for SVM.
In ICML, pp. 807–814, 2007.

Srebro, N., Sridharan, K., and Tewari, A. Smoothness,
low noise and fast rates. In NIPS 23, pp. 2199–2207,
2010.

Wang, Z., Crammer, K., and Vucetic, S. Breaking the
curse of kernelization: Budgeted stochastic gradient
descent for large-scale svm training. J. Mach. Learn.

Res., 13:3103–3131, 2012.

Wu, M., Schölkopf, B., and Bakır, G. A direct method
for building sparse kernel learning algorithms. J.

Mach. Learn. Res., 7:603–624, 2006.

Zhang, L., Jin, R., Chen, C., Bu, J., and He, X. Effi-
cient online learning for large-scale sparse kernel lo-
gistic regression. In AAAI’12, pp. 1219–1225, 2012.

Zhao, P., Wang, J., Wu, P., Jin, R., and Hoi, S.C.H.
Fast bounded online gradient descent algorithms for
scalable kernel-based online learning. In ICML, pp.
169–176, 2012.

Zhu, J. and Hastie, T. Kernel logistic regression and
the import vector machine. In NIPS 13, pp. 1081–
1088, 2001.

