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Abstract

Multiple Instance Learning (MIL) generally
represents each example as a collection of in-
stances such that the features for local ob-
jects can be better captured, whereas tra-
ditional methods typically extract a global
feature vector for each example as an in-
tegral part. However, there is limited re-
search work on investigating which of the
two learning scenarios performs better. This
paper proposes a novel framework – Multi-
ple Instance LEArning with Global Embed-
ding (MILEAGE), in which the global feature
vectors for traditional learning methods are
integrated into the MIL setting. Within the
proposed framework, a large margin method
is formulated to adaptively tune the weights
on the two different kinds of feature represen-
tations (i.e., global and multiple instance) for
each example and trains the classifier simul-
taneously. An extensive set of experiments
are conducted to demonstrate the advantages
of the proposed method.

1. Introduction

Traditional learning methods usually consider each
example as one non-separable entity, and represent
the whole content of the example by one feature
vector. However, the semantic meanings of an ex-
ample sometimes vary among its constituent parts.
Multiple Instance Learning (MIL) has been proposed
to deal with problems whose output information is
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only known for bags of items/instances, as opposed
to for each example. More precisely, in a MIL set-
ting, each example/bag is divided into several differ-
ent parts/instances. The labels are assigned to bags,
rather than individual instances. A bag is labeled
as positive if it contains more than one positive in-
stance; otherwise it is labeled as negative. In this
paper, for each example, the feature vector extracted
by using the same way as we do for traditional non-
MIL methods (i.e., treating each example as an in-
tegral entity) is referred to as the global represen-

tation of this example, while its local representa-

tion is a set of instances extracted for each part of
this example, as in MIL. To some extent, the global
representation for each example can also be consid-
ered as its bag level features. Numerous methods have
been developed for MIL classification (Andrews et al.,
2003; Dietterich et al., 1998; Kim & la Torre, 2010)
and its variants, such as outlier detection (Wu et al.,
2010), online learning (Babenko et al., 2011), rank-
ing (Hu et al., 2008), etc. These methods have
been widely employed in areas such as text mining
(Andrews et al., 2003) and localized content based im-
age retrieval (LCBIR) (Rahmani & Goldman, 2006).

Most previous MIL methods focused on improving
classification performance under local representation.
However, few of them investigated whether the local
representation is always better than the global one.
This problem has posed a big challenge for researchers
to decide what kind of algorithms should be used when
facing real world applications. In (Ray & Craven,
2005), the authors compared the performances of tra-
ditional and MIL methods. However, their work is still
based on the local representation, and adapts the tra-
ditional learning methods to the local representation.

Although rarely studied, it is intuitive that the true
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positive rates in positive bags could affect the per-
formances of local and global representations signif-
icantly. This is because if the true positive rate in
a positive bag is low, then its global representation
will be dominated by the irrelevant parts of this ex-
ample, while methods based on local representation
could pick the true positive instances for training. On
the contrary, if an example has few irrelevant parts,
then the global representation tends to be more infor-
mative than the local one, since methods based on lo-
cal representations normally focus on some local parts
of each example. This intuition can also be verified
empirically by the experiments conducted in Section
4.1. When incorporating this intuition into real appli-
cations, the major challenge is how to learn for each
training example, whether local representation is bet-
ter or global one tends to prevail.

To solve this challenge, a novel research framework
– Multiple Instance LEArning with Global Embed-
ding (MILEAGE) is proposed. MILEAGE leverages
the benefits from both local and global representations
such that in general it can achieve a better perfor-
mance than both MIL and traditional learning meth-
ods. From another perspective, local and global fea-
ture representations can be treated as two information
sources, and each of them carries some auxiliary infor-
mation to improve classification performance, which
is similar to the basic motivation of multi-view learn-
ing methods (Joachims et al., 2001). To solve the pro-
posed framework, a novel method is designed by adap-
tively tuning the importance of the two different rep-
resentations. It is based on the intuition that local
representation tends to perform better when the pos-
itive ratio is small. An iterative method is employed
to solve the derived optimization problem. To acceler-
ate the optimization speed, inspired by (Fuduli et al.,
2004), we adapt the bundle method to solve the result-
ing non-convex non-smooth problem by explicitly con-
sidering the convex regularization and the non-convex
loss terms. Some discussions and theoretical analysis
have been provided on important properties such as
convergence rate and generalized error rate of the pro-
posed method. Experiments on image, text datasets
and a novel application – Insider Threat Detection,
demonstrate the advantages of the proposed method.

2. Methodology

2.1. Problem Statement and Notation

Suppose a set of examples: D = {(Bi,Bi∗, Yi), i =
1, . . . , n} are given, where Bi ∈ Rd×1 denotes the
global representation for the i-th example and Yi ∈
{1,−1} is its binary label. Along with the global fea-

ture representation, for each example, its local fea-
ture representations, i.e., instances for different parts
of this example, are also available (The notions of
global and local representations are defined in Sec-
tion 1). The instances in the i-th bag are denoted
as: Bi∗ = {Bi1,Bi2, . . . ,Bini

} ∈ Rd×ni 1, and ni is
the number of instances in the i-th bag. Throughout
the paper, subscript ∗ means j = 1, . . . , ni. Given an
unlabeled example Bu and its associated local repre-
sentations, i.e., Bu∗, the objective of Multiple Instance
LEArning with Global Embedding (MILEAGE) is to
design a function f : (Bu,Bu∗) → R, such that the
classification on this unlabeled example is accurate. If
f(Bu,Bu∗) > 0, this example is classified as positive
and otherwise negative.

2.2. Method

For each bag, a weight variable is introduced to bal-
ance the importance of the two representations. The
weight is decided by both the prior knowledge from the
positive ratio for each bag and the fitness of the data.
Without loss of generality, given a specific example Bi
and its associated instances Bi∗, the classifier takes
the following form:

f(Bi, Bi∗) = λi max
j

w
T
Bij + (1 − λi)w

T
Bi, (1)

where 1 ≥ λi ≥ 0 is the convex combination coef-
ficient for the i-th example, w ∈ Rd×1 is the linear
classifier and we assume that the bias has already been
absorbed into feature vectors. maxj wTBij is the out-
put from the local representation of the i-th example2,
whereas wT Bi is the output from its global represen-
tation. f(Bi,Bi∗) balances these two outputs through
the weight λi. From a Bayesian perspective, given a
dataset, the logarithm of the posterior distribution for
w and λ can be written as follows:

log P (w, λ|D) ∝ log P (D|w, λ)P (w)

n
∏

i=1

P (λi), (2)

where λ = [λ1, . . . , λn]. Here, we assume that the
examples are i.i.d. generated. P (w) follows the Gaus-
sian distribution N (0, I). P (λi) follows the Beta dis-
tribution with beta(γe−µri , γe−µ(1−ri)), where µ and
γ are the hyper-parameters and partially control the
mean and skewness of the distribution. ri ∈ [0, 1] is
the prior knowledge on the positive ratio for the i-
th bag, and can be obtained through various ways.
For example, ri can be simply set to 0.5 if no prior
knowledge is available. In practice, a preliminary clas-
sifier can be trained beforehand by using SVM on

1We assume that the local and global representations
share the same feature space. But the proposed formula-
tion can be extended to the case when their feature spaces
are different.

2The output of each example in MIL is normally decided
by the instance that appears to be most positive under a
classifier w (Andrews et al., 2003)
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{(Bi, Yi), i = 1, . . . , n}. Then, ri can be estimated by
applying this classifier on the instances in each bag. It
is clear that E(λi) = e−µri/(e−µri + e−µ(1−ri)). Given
w and λ, the probability of generating a dataset D
can be described by the hinge loss as: P (D|w, λ) ∝
∏n

i=1 e−C max{0,1−Yi(λi maxj wT Bij+(1−λi)w
T Bi)}, where C

is a parameter. Then, maximizing Eq.(2) is equivalent
to solving the following problem:

min
w,λ,ξi≥0

1

2
‖w‖2 + C

n
∑

i=1

ξi −
n

∑

i=1

(

(γe
−µri − 1) log λi

+(γe
−µ(1−ri) − 1) log(1 − λi)

)

(3)

s.t. ∀i ∈ {1, . . . , n},

Yi(λi max
j

w
T
Bij + (1 − λi)w

T
Bi) ≥ 1 − ξi.

This formulation is non-convex and cannot be solved
directly. An iterative method is employed to solve this
problem. In particular, for the k-th iteration, given
w(k−1), λ1, . . . , λn can be updated by:

min
λ

C

n
∑

i=1

max{0, 1 − Yi(λiw
(k−1)T

B
ij

(k−1)
i

+ (1 − λi)w
(k−1)T

Bi)}

−
n

∑

i=1

((γe
−µri − 1) log λi + (γe

−µ(1−ri) − 1) log(1 − λi)) (4)

where j
(k−1)
i = arg maxj w(k−1)T Bij . The convexity

of this objective function cannot be determined, since
the signs of (γe−µri − 1) and (γe−µ(1−ri) − 1) are not
clear. But some methods, such as the adapted sub-
gradient method, can still be used to find its optimal
or local optimal solution efficiently. Given λ from the
previous step, w(k) can be optimized by:

min
w

1

2
‖w‖2+ (5)

C

n
∑

i=1

max{0, 1 − Yi(λi max
j

w
T
Bij + (1 − λi)w

T
Bi)}

It is still a non-convex non-smooth optimization prob-
lem. But the form is much less complicated than
that of problem (3). It can be solved through var-
ious ways, such as constrained concave-convex pro-
cedure (CCCP) (Yuille & Rangarajan, 2003). How-
ever, the computational cost for solving this problem
is non-trivial. In several recent works, the bundle
method has shown its superior performance in both ef-
ficiency and effectiveness over state-of-the-art methods
(Joachims, 2006; Joachims et al., 2009; Smola et al.,
2007; Teo et al., 2010). However, one major drawback
for this method is that it can only be employed to solve
convex optimization problems. In (Fuduli et al., 2004;
Hare & Sagastizábal, 2010; Noll, 2012), several heuris-
tics are employed to handle this issue for the bun-
dle method. In this paper, inspired by (Fuduli et al.,
2004), we adapt the bundle method to solve this pro-
posed optimization problem in the next section. Based

on these updating schemes, problem (4) and problem
(5) will be conducted iteratively until convergence.

It is clear that the proposed formulation is induc-
tive on the classifier but transductive on λi. So, if
we only need to predict the unlabeled instances in
the unlabeled set, then we can directly apply the
learned classifier. If the prediction is made on the
bag level, on an unlabeled example (Bu,Bu∗), j =
1, . . . , nu. Its hidden variable λu can be estimated as:
λ∗

u = E(λu|Bu,Bu∗) = e−µru/(e−µru + e−µ(1−ru)),
where ru is the positive instance ratio within this
bag estimated from the learned classifier w. Then,
f(Bu,Bu∗) = λ∗

u maxj wT Buj + (1 − λ∗
u)wTBu. If

f(Bu,Bu∗) > 0, the example is labeled as positive
and otherwise it is labeled as negative.

2.3. Bundle Method for Non-Convex

Non-Smooth Optimization

The traditional bundle method looks for a set of cut-
ting planes that could serve as lower bounds of the
original convex objective function. For non-convex
optimization problems, however, these cutting planes
could no longer serve as lower bounds of the objective
functions, as shown in Fig.1. Some research works con-
sider shifting of affine pieces downwards (Noll, 2012;
Schramm & Zowe, 1992). However, the amount of the
shifting appears arbitrary (Fuduli et al., 2004).

In this section, the bundle method, which is based on
first order approximation, is adapted to solve problem
(5). In particular, the intended objective function can
be casted as the following framework:

min
w

F (w) = Ω(w) + Remp(w), (6)

where Ω(w) is a non-negative convex differentiable reg-
ularizer, and Remp(w) is a non-convex non-smooth
loss function. In problem (5), Ω(w) = 1

2‖w‖2

and Remp(w) = C max{0, 1 − Yi(λi maxj wT Bij + (1 −

λi)w
T Bi)}.

This method handles this non-convex non-smooth
problem in an iterative way and exhibits a kind of both
convex and nonconvex behavior relative to the current
point in the iterative procedure. More precisely, for
the t-th iteration of bundle method, it maintains two

sets of cutting planes, i.e., I+ , {j|α
(t)
j ≥ 0}, I− ,

{j|α
(t)
j < 0}, where j = 1, . . . , t − 1 and

α
(t)
j , Remp(w(t−1)) − Remp(w(j)) − g

T
j (w(t−1) − w

(j)). (7)

Here, gj ∈ ∂wRemp(w
(j))3. Then, the following two

3For simplification, we abused the superscript. Please
note that in this section, the superscript t denotes the t-th
iteration in the bundle method.
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Figure 1. Approximation of Remp(w) at w4. The cutting
planes from other points either over or underestimate the
value at and in the vicinity of w4, and the sign of αi will
not change in the vicinity of w4 (α1 < 0, α2 > 0, α3 < 0).
Based on this locality characteristic, we adapted the bundle
method in Section 2.3.

sets of affine functions are defined as:

∆+(w) , max
j∈I+

g
T
j (w − w

(t−1)) − α
(t)
j ,

∆−(w) , min
j∈I

−

g
T
j (w − w

(t−1)) − α
(t)
j . (8)

It is clear that ∆+(w) is an approximation of
Remp(w) − Remp(w

(t−1)), while ∆−(w) is its locally
pessimistic estimation. These approximations are only
locally valid around the local minimal point. Here,

the meanings of α
(t)
j and the locality property can

be shown in Fig.1. Therefore, during each itera-
tion, the new optimal point should tradeoff minimizing
∆+(w) and proximity ‖w−w(t−1)‖ with the constraint
∆+(w) ≤ ∆−(w) as follows:

min
w,ζ

P (w, γ
(t)) = γ

(t)(ζ + Ω(w)) +
1

2
‖w − w

(t−1)‖2 (9)

s.t. ζ ≥ g
T
j (w −w

(t−1)) − α
(t)
j , j ∈ I+,

ζ ≤ g
T
j (w −w

(t−1)) − α
(t)
j , j ∈ I−,

where γ(t) is the non-negative proximity control pa-
rameter for the t-th iteration that balances the objec-
tive function value and the proximity of the updated
point. This problem can be solved efficiently through
its dual form, since both of the sets I+ and I− are
small. Suppose w(t) = arg minw P (w, γ(t)). If not
computationally expensive, a line search can be per-
formed between w(t) and w(t−1) on F (w) such that a
better solution can be found.

If the optimal solution can result in a drastic decrease
in the objective function F (w), it is called a serious
step and the optimal solution for w will be updated.
Otherwise, it is considered as a null step, the optimal

solution for the previous step is kept, and the prox-
imity parameter will shrink for a better solution. If
‖w(t) − w(t−1)‖ is less than a predefined threshold θ,
the proximity parameter will also shrink to do a more
thorough search within that region.

The classic bundle method usually checks whether the
difference between the objective function value and
the cutting plane function value is less than a thresh-
old. If so, the iteration terminates. Here, this strat-
egy cannot be used because the cutting planes of the
non-convex function cannot be considered as the lower
bounds for the original objective function any more.
In the proposed method, during each iteration, two
stopping criteria will be checked. The first stopping
criteria is to check whether γ(t) is smaller than a spec-
ified threshold ǫ1. This is because although we hope
that the new updated point should fall within a small
region of w(t−1), if γ(t) becomes too small, w(t) is un-
likely to deviate too much from w(t−1), and the re-
sults will not be meaningful. An extreme example is
if γ(t) = 0, then w(t) = w(t−1). The second stopping
criteria is to check whether 0 ∈ ∂F (w(t)), i.e., whether
w(t) can be considered as a stationary point for F (w).
In practice, we check whether ‖o∗‖/F (w(t)) ≤ δ,
where o∗ = mino∈conv{gj|j∈J+} ‖o + ∂Ω(w(t))‖ and

J+ = {i ∈ I+|α
(t)
i ≤ ǫ2}. In particular,

o
∗ = Gυ

∗ + ∂Ω(w(t)), (10)

where G is a matrix with its columns be-
ing the subgradients gj from J+ and υ∗ can be
optimized by solving υ∗ = arg min υTGTGυ +
2(∂Ω(w(t)))T Gυ s.t. υT1 = 1, υ ≥ 0.

3. Discussions and Theoretical Analysis

The proposed bundle method is summarized in Table
1. It is clear that the major advantage of the proposed
method over (Fuduli et al., 2004) is that the proposed
method better exploits the structure of the objective
function by treating the convex and non-convex parts
separately. It therefore eliminates the unnecessary first
order approximation for the convex part. In this way,
theoretically the cutting plane approximation for the
whole objective function is more accurate than the one
used in (Fuduli et al., 2004).

In (Bergeron et al., 2012), the authors directly ap-
plied (Fuduli et al., 2004) to MIL. However, there
are several major differences between these two pa-
pers. 1. (Bergeron et al., 2012) only focuses on
the traditional MIL, and can not be used to solve
MILEAGE. 2. By directly employing (Fuduli et al.,
2004), (Bergeron et al., 2012) does not treat the con-
vex and non-convex parts separately either and there-
fore its first order approximation is less accurate than
the one used in this paper.
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Input: 1. The objective function: Ω(w) + Remp(w). 2. Parameters: descent coefficient: m = 0.1, initial proximity

control parameter γ(1) = 1, deviation parameters ǫ1 = 0.01, ǫ2 = 0.1 and θ = 0.01, decay coefficient η = 0.9, gradient
precision δ = 0.01. Output: w.

1. Initialize w(1) , t=1
repeat:
2. t = t + 1.

3. Get (w(t), ζ(t)) by solving the dual of problem (9).

4. If F (w(t)) ≤ F (w(t−1)) + m(ζ(t) + Ω(w(t)) − Ω(w(t−1))) and ‖w(t) − w(t−1)‖ ≥ θ

5. γ(t) = γ(t−1)

6. else

7. γ(t) = ηγ(t−1)

8. If γ(t) ≤ ǫ1, then exit.

9. If F (w(t)) > F (w(t−1)) + m(ζ(t) + Ω(w(t)) − Ω(w(t−1))), then, w(t) = w(t−1) .
10. end if

11. I+ = φ, I
−

= φ
12. for j=1 . . . t

13. Evaluate α
(t)
j

according to Eq.(7), if α
(t)
j

≥ 0, then, I+ = I+
⋃

j; if αj < 0, then, I
−

= I
−

⋃

j;

14. end for

15. Compute o∗ according to Eq.(10). If ‖o∗‖/F (w(t)) ≤ δ, then exit.
until algorithm terminates

16. w = w(t) .

Table 1. The proposed bundle method for non-convex non-smooth optimization

In (Do & Artières, 2009), the non-convex formulation
for hidden markov models is also solved by adapting
the bundle method to the non-convex case, and treat-
ing the convex and non-convex parts separately. The
adapted method is reasonable by tuning the cutting
plane at each iteration according to the comparison
with the previous “optimal” cutting plane. However,
even with this tuning, the obtained cutting plane is
still not able to serve as the lower bound of the objec-
tive function. On the contrary, the proposed method
does not focus on looking for the lower bound, but
some important local properties around each point.

Furthermore, based on the proposed bundle method,
some important properties are analyzed in Theorem 1
and Theorem 2.

Theorem 1: Suppose D = maxt Ω(w(t))

and R = maxj ‖gj‖, then −
γ2
0

2 R2 ≤

P (w(t), γ(t)) ≤ γ0D. In solving problem

(5), −γ2
0C2

2 max{maxi,j ‖Bij‖2, maxi ‖Bi‖2} ≤

P (w(t), γ(t)) ≤ γ0D.

Proof: Please refer to Supplemental Materials. �

Theorem 2: The bundle method terminates after at
most log ǫ1

γ0
/ log(η)+ 2Eγ0

mθ2 steps, given min Remp(w)+

Ω(w) is upper bounded by E. In solving problem (5),
the algorithm terminates after at most log ǫ1

γ0
/ log(η)+

2nCγ0

mθ2 steps.

Proof: Please refer to Supplemental Materials. �

Suppose the class of classifier satisfies ‖w‖ ≤ B
and λ are obtained from iterative updates. Since
the proposed method can be easily extended to the
kernel case, FB is defined as: {f |f : (Bi,Bi∗) →
λi maxj wT φ(Bij) + (1 − λi)w

T φ(Bi), ‖w‖ ≤ B},

where φ is a nonlinear map with kernel function K(·, ·).
The generalized error bound can be derived by the fol-
lowing theorems:

Theorem 3: The empirical Rademacher com-
plexity of the functional space FB on D =
{(Bi,Bi∗, Yi), i = 1, . . . , n} is upper bounded by:
2B
n maxϕij≥0,ϕT

i
1=1

√

∑n
i=1

∑ni

j=1 λ2
i ϕ

2
ijK(Bij ,Bij) +

2B
n

√

∑n
i=1(1 − λi)2K(Bi,Bi).

Proof: Please refer to Supplemental Materials. �

Theorem 4: Fix κ ∈ (0, 1). Then, with prob-
ability at least 1 − κ, every f ∈ FB satisfies:
P (y 6= sign(f(Bi,Bi∗))) ≤ 1

n

∑n
i=1 max{0, 1 −

Yi(λi maxj wT Bij + (1 − λi)w
T Bi)} +

2B
n maxϕij≥0,ϕT

i
1=1

√

∑n
i=1

∑ni

j=1 λ2
i ϕ

2
ijK(Bij ,Bij) +

2B
n

√

∑n
i=1(1 − λi)2K(Bi,Bi) + 3

√

ln(2/κ)
2n .

Proof: It can be proved by applying Theorem 3 to
Theorem 4.9 in (Shawe-Taylor & Cristianini, 2004). �

From Theorem 3 and Theorem 4, it can be seen that
the derived Rademacher complexity and generalized
error bound are related to both the local and global
feature representations. Theorem 5 states the case
when the Rademacher Complexity can be improved,
compared with both local and global feature represen-
tations.

Theorem 5: Suppose a ≤ λi ≤ max{C2

C1
a, 1 −

C2

C1
(1 − a)}, i = 1, . . . , n, a ∈ [0, 1], where C1 =

2B
n maxϕij≥0,ϕT

i
1=1

√

∑n
i=1

∑ni

j=1 ϕ2
ijK(Bij ,Bij)

and C2 = 2B
n

√

∑n
i=1 K(Bi,Bi), then,

2B
n maxϕij≥0,ϕT

i
1=1

√

∑n
i=1

∑ni

j=1 λ2
i ϕ

2
ijK(Bij ,Bij) +
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Figure 2. Experiments with different positive ratios. The true positive (marked by red) and negative (marked by blue)
instance distributions are shown in (a) and (c) respectively, with different amount of overlap. The positive bags are
generated by extracting specified ratios of positive instances (as indicted in x-axis of (b) and (d)) and negative instances
from the two instance distributions, while negative bags are composed of negative instances. SVM and its MIL variant
– MISVM (Andrews et al., 2003), are used for comparisons. Here, for SVM, experiments are conducted on the averaged
features in each bag. In (b) and (d), the averaged accuracy of 20 independent runs under different positive ratios are
reported for datasets generated from (a) and (c) respectively.

2B
n

√
∑n

i=1(1 − λi)2K(Bi,Bi) ≤ max{C1, C2}.

Proof: Please refer to Supplemental Materials. �

In Theorem 5, C1 indicates the Rademacher Com-
plexity derived from the local representation, while C2

represents the Rademacher Complexity for the global
representation. It can be concluded that, under some
restrictions, the Rademacher Complexity of the pro-
posed method is guaranteed to be less than the max-
imum one of the Rademacher Complexities for local
and global representations.

4. Experiments

4.1. Synthetic Experiments

The synthetic dataset is designed to verify the intu-
itions conveyed in this paper, i.e., local representation
works better when the true positive ratios in positive
bags are lower, while global representation works bet-
ter when the ratios are higher. In particular, we design
two sets of experiments as shown in Fig.2. For each
set of experiments, positive instances are generated
from a Gaussian distribution, and negative ones are
generated from another three Gaussian distributions,
with different amounts of overlap, as shown in Fig.2(a)
and Fig.2(c). Based on these two data distributions,
for each set of experiments, 6 toy datasets are created
with each positive bag containing a certain ratio of
positive and negative instances and each negative bag
containing all negative instances. Each bag contains
10 instances. For each dataset 1000 positive bags and
1000 negative ones are i.i.d. generated. SVM and its
MIL variant – MISVM (Andrews et al., 2003) (We re-
port the comparison results of these two methods, be-

cause their objective functions are the same except for
the local and global representation part) are used for
comparison, where the average feature representation
of each bag is used as its global feature representation
and used by SVM. For each experiment, 50% exam-
ples are randomly picked for training, and the rest for
testing. The averaged results of 20 independent runs
under different ratios of positive instances in positive
bags are reported in Fig.2(b) and Fig.2(d) for datasets
generated from Fig.2(a) and Fig.2(c) respectively, with
the parameters tuned by 5-fold cross validation.

It can be partially concluded from the experiments
that: (1) The local representation is not always better
than the global one; (2) The local representation tends
to perform better than the global one when the pos-
itive ratio is low; (3) There is no universally “good”
positive ratio below which the local representation is
definitely better than the global one. (4) It seems that
if the amount of overlap between positive and negative
distributions is high, the local representation is likely
to be worse than that of the global representation4.

4.2. Real Applications

These experiments are conducted on three datasets,
i.e., an image dataset from Corel (Andrews et al.,
2003), a text dataset from Reuters21578 as well as
newly proposed application – Insider Threat Detec-
tion. In MIL, MUSK (Dietterich et al., 1998) is also
a commonly used benchmark dataset. But its perfor-

4Please note that although the overlap in Fig.2(c) looks
heavy on the instance level, SVM can still attain almost
100% accuracy. This is because their global features are
much better separated, since the average of the instance
features greatly reduce the variance of the distributions.
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mance is not reported here, because the meaning of
the global representation for MUSK is not clear. In
MUSK, instances represent different conformations of
molecule. For each molecule, a set of conformations
do not convey physical meanings in global representa-
tion. But for images and documents, each image or
document itself can be considered a concrete object.

The Corel dataset is divided into three sub-datasets,
i.e., Fox, Elephant and Tiger. For a detailed de-
scription of these three datasets, please refer to
(Andrews et al., 2003). For each picture/example in
Corel, the global feature vector is the average of the
instances on all dimensions.

For Reuters21578, documents from 4 sub-categories,
as well as some negative documents, are randomly
picked. For each of the sub-dataset, after removing
the stop words and stemming, tf-idf (Manning et al.,
2008) features are extracted and processed by PCA
(Berry & Castellanos, 2007). The resulting dimen-
sionality is 249. For each document/bag, the global
feature vector is extracted from the whole content;
while the instance features are derived through a slid-
ing window with fixed length (Andrews et al., 2003).
For Reuters1, Reuters2, Reuters3, Reuters4, they con-
tain 1602, 1256, 1100, 502 bags, and 3006, 2181, 2249,
920 instances, respectively.

For Insider Threat Detection (ITD), We obtained this
real dataset from a big IT company. ITD is a project
which is devoted to find the potential harmful insid-
ers through analyzing their online behaviors, such as
sending emails, login, logout, downloaded files. In this
dataset, some experts are hired to decide whether dur-
ing each period (around 30 days), each person in the
database did malicious things or not. Each online be-
havior is quantified as a feature value. However, it
is highly possible that if a person did malicious things
during a period, it does not mean that he did malicious
things every day. Out of this motivation, the features
for the online behaviors within one day is considered
as an instance and the instances during each period
is treated as a bag. If a person is known to do some
malicious things in a specific period, then the corre-
sponding collection of instances (days) is considered as
a positive bag. Otherwise, this collection of instances
will be considered as negative. The global feature rep-
resentation for each bag is extracted from the corre-
sponding period as a whole. The whole dataset con-
tains 1000 negative bags and 166 positive bags, where
each bag contains around 30 instances and each in-
stance is represented by 32 features. On this dataset,
due to the imbalance of the dataset, F1 score for the
top 20 returned results is used here for measurement.
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Figure 3. Parameter Sensitivity Comparisons

4.3. Comparison Results

In the proposed method, parameters C, γ and µ are
set through 5-fold cross validation on the training set
through the grids 2[−5:2:7], 2[−4:2:8] and [0.1, 1, 10, 100]
respectively. To show the advantages of the pro-
posed large margin method, we compare it with sev-
eral baseline methods, including traditional large mar-
gin methods, SVM-B, SVM-I, and multiple instance
learning methods: Citation KNN (Wang & Zucker,
2000), MISVM (Andrews et al., 2003), miSVM
(Andrews et al., 2003), MILES (Chen et al., 2006),
and ISMIL (Fu & Robles-Kelly, 2009).

For SVM-B, SVM is used on the bag/global features
for training and prediction. For SVM-I, the bag la-
bels are assigned to their corresponding instances, and
SVM is used on these labeled instances. For each un-
labeled bag, if at least one of its instances is labeled
as positive by SVM-I, then its bag label is positive.
Otherwise, it is negative. As for MIL methods, Ci-
tation KNN is an adaptation of traditional K nearest
neighbor to MIL. MISVM and miSVM are two large
margin multiple instance classification methods, de-
rived from SVM. MILES tries to represent each bag
by using one feature vector, and then design a clas-
sifier based on that. For ISMIL, the algorithm maps
bags into a space spanned by some selected instances,
and designs a classifier based on that. The parameters
of the baseline methods are also tuned by 5-fold cross
validation. For the large margin methods, for the fair
of comparison, only linear classifiers are used.

The average accuracy of 20 independent runs are re-
ported in Table 2 and 3. For each experiment, 90%
examples are randomly sampled as training examples,
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Image Text Insider Threat Detection
Fox Elephant Tiger Reuters1 Reuters2 Reuters3 Reuters4 ITD

MILEAGE 64.5 84.5 84.0 90.3 92.9 93.2 91.6 0.495

SVM-B 53.8 83.0 76.0 90.5 92.0 91.1 88.2 0.397
SVM-I 56.5 71.2 72.5 88.5 92.4 88.9 89.4 0.401

CitationKNN 60.5 81.5 82.0 86.5 86.7 80.9 81.4 0.319
MISVM 59.0 78.3 81.7 90.6 91.9 91.3 90.4 0.474
miSVM 57.5 81.0 78.3 88.2 91.7 90.5 86.6 0.444
MILES 62.0 81.9 77.5 88.9 91.7 92.2 88.4 0.469
ISMIL 61.6 82.0 78.9 88.0 90.3 91.5 89.3 0.417

Table 2. Accuracy Comparisons (%) on Image and Text datasets, and F1 Comparisons on Insider Threat Detection. On
ITD dataset, F1 score for the top 20 returned results is used here for measurement due to the imbalance of the dataset.

Image Text Insider Threat Detection
Fox Elephant Tiger Reuters1 Reuters2 Reuters3 Reuters4 ITD

MILEAGE 26.2 48.7 58.3 254.8 225 74.5 53.9 12.6
SVM-B 0.06 0.01 0.02 0.7 0.7 0.4 0.2 0.8
SVM-I 0.8 0.5 0.4 0.9 1.2 0.8 0.7 0.7

CitationKNN 42.7 48.5 36.2 166.6 90.4 80.0 14.3 93.8
MISVM 27.9 13.7 13.5 242.3 431.2 309.3 165.5 4.6
miSVM 25.3 19.3 3.8 17.3 10.5 7.5 1.2 5.8
MILES 26.6 30.1 23.4 476.3 236.4 201.0 17.0 2308
ISMIL 9.5 11.3 10.0 210.2 100.3 62.1 10.8 58.4

Table 3. Time Comparisons (in seconds)

while the remaining ones are used for testing. It is
clear that MIL methods are not better than the tradi-
tional learning methods on all of these datasets, which
further verifies that the local representation for MIL
may not be always better than the global representa-
tion. From these experimental results, in most cases,
MILEAGE shows the best performance. This is be-
cause MILEAGE takes advantage of both local and
global representations adaptively. These two differ-
ent representations can be considered as two different
information sources, and both of them convey some
useful information in improving the performance.

For time comparisons, the proposed method is com-
parable with most of the other MIL methods. The
efficiency of the proposed bundle method plays an im-
portant role. For example, MISVM needs to solve a
non-convex problem similar to problem (5) only once
for each experiment, but the proposed method needs to
solve problems (4) and (5) for around 15 times before
convergence. So, the average amount of time needed
for each independent execution of the bundle method
is small, compared with that of MISVM. On the other
side, traditional learning methods such as SVM-B and
SVM-I tend to be more efficient because they can eas-
ily apply convex optimization methods such as Se-
quential Maximization Optimization to their convex
objective functions once with only one kind of repre-
sentations. But the proposed MILEAGE framework
generate more accurate results in most cases due to
the more realistic non-convex setting of both global
representations and local representations.

To show the robustness of the proposed method, some
parameter sensitivity experiments are conducted on C,

µ, γ, and shown in Fig.3. The averaged experiments of
20 independent runs on Reuters4 are reported. From
these experiments, it can be seen that the proposed
method is relatively robust with respect to these pa-
rameters. We also observed similar patterns from ex-
periments on the other datasets.

5. Conclusions

This paper presents a novel machine learning problem
– Multiple Instance LEArning with Global Embedding
(MILEAGE) for integrating the global feature repre-
sentations into multiple instance learning. To solve the
proposed problem, a large margin method is proposed,
which adaptively tunes the weights for the two differ-
ent feature representations imposed on each bag and
trains the classifier. To solve the resulted non-convex
non-smooth problem efficiently, an alternative method
is employed and the bundle method that explicitly
treats the convex and non-convex parts is suggested.
Some theoretical analysis, such as the time complex-
ity and generalized error rate, are provided thereafter.
The experimental results on both the text and image
datasets, as well as the newly proposed application –
Insider Threat Detection, clearly demonstrate the ad-
vantages of the proposed method.

Acknowledgments

This work is partially supported by NSF research
grants IIS-0746830, CNS- 1012208 and IIS-1017837.
This work is also partially supported by the Center
for Science of Information (CSoI) under grant agree-
ment CCF-0939370.



MILEAGE: Multiple Instance LEArning with Global Embedding

References

Andrews, S., Tsochantaridis, I., and Hofmann, T. Support
vector machines for multiple-instance learning. In NIPS,
2003.

Babenko, Boris, Yang, Ming-Hsuan, and Belongie, Serge.
Robust object tracking with online multiple instance
learning. IEEE Trans. Pattern Anal. Mach. Intell., 33
(8):1619–1632, 2011.

Bergeron, Charles, Moore, Gregory M., Zaretzki, Jed,
Breneman, Curt M., and Bennett, Kristin P. Fast bundle
algorithm for multiple-instance learning. IEEE Trans.
Pattern Anal. Mach. Intell., 34(6):1068–1079, 2012.

Berry, Michael W. and Castellanos, Malu. Survey of Text
Mining: Clustering, Classification, and Retrieval, Sec-
ond Edition. 2007.

Chen, Yixin, Bi, Jinbo, and Wang, James Ze. Miles:
Multiple-instance learning via embedded instance selec-
tion. IEEE Trans. Pattern Anal. Mach. Intell., 28(12):
1931–1947, 2006.

Dietterich, T. G., Lathrop, R. H., and Lozano-Perez, T.
Solving the multiple instance problem with axis-parallel
rectangles. In Artificial Intelligence, 1998.

Do, Trinh Minh Tri and Artières, Thierry. Large margin
training for hidden markov models with partially ob-
served states. In ICML, pp. 34, 2009.

Fu, Zhouyu and Robles-Kelly, Antonio. An instance selec-
tion approach to multiple instance learning. In CVPR,
pp. 911–918, 2009.

Fuduli, Antonio, Gaudioso, Manlio, and Giallombardo,
Giovanni. Minimizing nonconvex nonsmooth functions
via cutting planes and proximity control. SIAM Journal
on Optimization, 14(3):743–756, 2004.
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